For π-conjugated polymers, the notion of spectroscopic units or "chromophores" provides illuminating insights into the experimentally observed absorption/emission spectra and the mechanisms of energy/charge transfer. To date, however, no statistical analysis has revealed a direct correspondence between chromophoric and conformational properties-with the latter being fundamental to polymer semiconductors. Herein, we propose a "persistence length" calculation to re-evaluate chain conformation over a full conjugation length. The mesoscale condensed systems of MEH-PPV and MEH-PPV/C hybrid (system size ∼10 × 10 × 10 nm) are utilized as two prototypical model systems, along with a full range of segmental lengths (2-20-mer) and five lowest singlet excited states to hint at the generality of the features presented. We demonstrate, for the first time, that two properly re-defined conformational factors that characterize chain folding and planarity, respectively, capture excellently the population distribution of chromophores in both systems investigated. In contrast, the conventional strategy of utilizing two adjacent monomer units to characterize (local) chain conformation results in only an inconspicuous correlation between the two, as previously reported. It is further shown that chain folding-and not chain planarity-is more relevant in capturing the associated oscillator strength for the first excited state, where the transient dipole moments are known to align with the chain conformation, although the corresponding excitation energy and exciton size seem relatively unaffected. The observed effects of C on the MEH-PPV adsorption spectra also agree with recent experimental trends. Overall, the present findings are expected to aid future multiscale computer simulations and spectroscopy-data interpretations for polymer semiconductors and their hybrid systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp03415fDOI Listing

Publication Analysis

Top Keywords

chain conformation
12
mesoscale condensed
8
condensed systems
8
polymer semiconductors
8
chain
6
systems
5
correspondence conformational
4
conformational chromophoric
4
chromophoric properties
4
properties amorphous
4

Similar Publications

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

RVP, a water-soluble triple-helix galactoglucomannan, was successfully extracted from the fruiting body of Russula virescens using an alkali extraction method. Physicochemical properties analysis showed that the protein content of RVP was low (0.95%).

View Article and Find Full Text PDF

Structure of the Kaposi's sarcoma-associated herpesvirus gB in post-fusion conformation.

J Virol

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA.

Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported.

View Article and Find Full Text PDF

Precise Synthesis of Complex Si-Si Molecular Frameworks.

J Am Chem Soc

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.

View Article and Find Full Text PDF

Type III clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems (type III CRISPR-Cas systems) use guide RNAs to recognize RNA transcripts of foreign genetic elements, which triggers the generation of cyclic oligoadenylate (cOA) second messengers by the Cas10 subunit of the type III effector complex. In turn, cOAs bind and activate ancillary effector proteins to reinforce the host immune response. Type III systems utilize distinct cOAs, including cyclic tri- (cA3), tetra- (cA4) and hexa-adenylates (cA6).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!