We investigate the mechanics of elastic fibres carrying liquid droplets. In such systems, buckling may localize inside the drop cavity if the fibre is thin enough. This so-called drop-on-coilable-fibre system exhibits a surprising liquid-like response under compression and a solid-like response under tension. Here we analyze this unconventional behavior in further detail and find theoretical, numerical and experimental evidence of negative stiffness events. We find that the first and main negative stiffness regime owes its existence to the transfer of capillary-stored energy into mechanical curvature energy. The following negative stiffness events are associated with changes in the coiling morphology of the fibre. Eventually coiling becomes tightly locked into an ordered phase where liquid and solid deformations coexist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7sm00368d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!