Metastatic castration-resistant prostate cancer (mCRPC) is the most aggressive and deadly form of prostate cancer. It is characterized by the overexpression of epidermal growth factor receptors whose signals are mediated by small monomeric G proteins of the Ras superfamily. These require polyisoprenylation for functional activity. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) of polyisoprenylated methylated protein methyl esterase (PMPMEase) were developed as potential targeted therapies to mitigate excessive growth signaling in mCRPC either by inhibiting PMPMEase and/or perturbing the polyisoprenylation-dependent functional interactions. We investigated the effects of PCAIs on the viability of prostate cancer PC 3, DU 145, MDA PCa 2b, LNCaP and 22Rv1 cells, determined the effect of the PCAIs on PC 3 cell proliferation, survival and caspase-mediated apoptotic cell death. Metastatic PC 3 and DU 145 cell migration and invasion in the presence of NSL-BA-040 were determined using the scratch and matrigel invasion assays. We further investigated the effect of NSL-BA-040 on F-actin organization in TagRFP F-actin marker-transfected metastatic PC 3 cells. The PCAIs suppress mCRPC cell viability with EC values ranging from 1.3 to 4.0 µM for the most potent of the PCAIs against PC 3, DU 145, MDA PCa 2b, LNCaP and 22Rv cells. PCAIs induced apoptotic cell death in PC 3 and DU 145 cells as determined by annexin V/propidium iodide flow cytometry analysis through the activation of caspases 3 and 8 while also inhibiting migration and invasion through the disruption of F-actin organization. Taken together, our studies show the anti-cancer effects on mCRPC cells through induction of caspase-mediated apoptosis and F-actin-mediated inhibition of cell motility and invasion thereby indicating the anti-tumor and anti-metastatic potential of the PCAIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5523032PMC

Publication Analysis

Top Keywords

prostate cancer
16
migration invasion
12
polyisoprenylated cysteinyl
8
cysteinyl amide
8
amide inhibitors
8
145 mda
8
mda pca
8
pca lncap
8
cells determined
8
apoptotic cell
8

Similar Publications

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Background: In TALAPRO-2, the poly(ADP-ribose) polymerase inhibitor talazoparib plus the androgen receptor-signaling inhibitor enzalutamide improved radiographic progression-free survival (rPFS) versus placebo plus enzalutamide (hazard ratio [HR] = 0.63; 95% CI, 0.51-0.

View Article and Find Full Text PDF

Advancements in pseudouridine modifying enzyme and cancer.

Front Cell Dev Biol

December 2024

Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.

Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.

View Article and Find Full Text PDF

Silencing of STEAP3 suppresses cervical cancer cell proliferation and migration via JAK/STAT3 signaling pathway.

Cancer Metab

December 2024

Department of Obstetrics and Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China.

Article Synopsis
  • STEAP3 is a critical protein associated with cervical cancer (CC) progression, showing strong expression in CC tissues and linked to poor patient prognosis.
  • The study employed various methods, such as immunohistochemistry and RNA sequencing, to investigate STEAP3's role, revealing that lower methylation levels of STEAP3 are connected to worse outcomes.
  • Knockdown of STEAP3 in CC cells reduced their growth and invasion abilities while enhancing drug sensitivity, suggesting STEAP3 drives cancer cell activity through the activation of the JAK/STAT3 signaling pathway.
View Article and Find Full Text PDF

Background: To assess the clinical utility of PCA3 in the diagnostic accuracy, the correlation between PCA3 and biopsy or pathological characteristics and the performance of PCA3 to reduce the unnecessary biopsies in Chinese population.

Methods: A prospective study including patients with indication of prostate biopsies from 4 centers was conducted. All patients underwent PCA3 urine tests and prostate biopsies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!