Placental growth factor (PlGF), a member of the vascular endothelial growth factor (VEGF) family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL) in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA) or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs) activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80, CD68, and Ly6C cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1) mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate that PlGF plays an important role in liver inflammation, angiogenesis, and fibrosis by promoting hepatic macrophage recruitment and activation, and suggest that blockage of PlGF could be a promising novel therapy for chronic fibrotic liver diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504098PMC
http://dx.doi.org/10.3389/fimmu.2017.00801DOI Listing

Publication Analysis

Top Keywords

liver inflammation
20
growth factor
12
recruitment activation
12
inflammation fibrosis
12
fibrotic livers
12
plgf silencing
12
plgf
11
placental growth
8
liver
8
inflammation angiogenesis
8

Similar Publications

No cost-effectiveness information of preventive strategies for mother-to-child transmission (MTCT) of hepatitis B virus (HBV) has existed for policy decision making. This study aimed to compare the cost-effectiveness of alternative strategies to prevent MTCT of HBV in Vietnam. Cost-utility analysis using a hybrid decision-tree and Markov model were performed from healthcare system and societal perspectives.

View Article and Find Full Text PDF

Background: A precise observation is that the cervix's solid tumors possess hypoxic regions where the oxygen concentration drops below 1.5%. Hypoxia negatively impacts the host's immune system and significantly diminishes the effectiveness of several treatments, including radiotherapy and chemotherapy.

View Article and Find Full Text PDF

Immunologic assessment of the impact of SARS-CoV-2 vaccine booster doses on humoral immunity: a cross-sectional study in morocco.

BMC Infect Dis

December 2024

Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.

To assess the impact of the SARS-CoV-2 booster dose on the immune response against COVID-19, we conducted a cross-sectional study in the Casablanca-Settat region of Morocco. The study included 2,802 participants from 16 provinces, all of whom had received three doses of a SARS-CoV-2 vaccine. IgG antibodies targeting the S1 RBD subunit of the SARS-CoV-2 spike protein were quantified using the SARS-CoV-2 IgG II Quant assay and measured on the Abbott Architect i2000SR instrument.

View Article and Find Full Text PDF

Background: Tuberculosis (TB) remains a significant global health issue. Drug-resistant TB and comorbidities exacerbate its burden, influencing treatment outcomes and healthcare utilization. Despite the growing prevalence of TB comorbidities, research often focuses on single comorbidities rather than comorbidity patterns.

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!