Anti-adhesion and Anti-biofilm Potential of Organosilane Nanoparticles against Foodborne Pathogens.

Front Microbiol

Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of AthensAthens, Greece.

Published: July 2017

Nowadays, modification of surfaces by nanoparticulate coatings is a simple process that may have applications in reducing the prevalence of bacterial cells both on medical devices and food processing surfaces. To this direction, biofilm biological cycle of Typhimurium, O157:H7, , and on stainless steel and glass surfaces, with or without nanocoating was monitored. To achieve this, four different commercial nanoparticle compounds (two for each surface) based on organo-functionalized silanes were selected. In total 10 strains of above species (two for each species) were selected to form biofilms on modified or not, stainless steel or glass surfaces, incubated at 37°C for 72 h. Biofilm population was enumerated by bead vortexing-plate counting method at four time intervals (3, 24, 48, and 72 h). Organosilane based products seemed to affect bacterial attachment on the inert surfaces and/or subsequent biofilm formation, but it was highly dependent on the species and material of surfaces involved. Specifically, reduced bacterial adhesion (at 3 h) of and was observed ( < 0.05) in nanocoating glass surfaces in comparison with the control ones. Moreover, fewer and biofilm cells were enumerated on stainless steel coupons coated with organosilanes, than on noncoated surfaces at 24 h ( < 0.05). This study gives an insight to the efficacy of organosilanes based coatings against biofilm formation of foodborne pathogens, however, further studies are needed to better understand the impact of surface modification and the underlying mechanisms which are involved in this phenomenon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504163PMC
http://dx.doi.org/10.3389/fmicb.2017.01295DOI Listing

Publication Analysis

Top Keywords

stainless steel
12
glass surfaces
12
foodborne pathogens
8
surfaces
8
steel glass
8
biofilm formation
8
biofilm
5
anti-adhesion anti-biofilm
4
anti-biofilm potential
4
potential organosilane
4

Similar Publications

Aim: The aim of this study was to compare the marginal accuracy of polyetheretherketone (PEEK) and zirconia copings fabricated using computer-aided design/computer-aided manufacturing (CAD/CAM) technology, and to assess the impact of their material properties on accuracy when produced with a 4-axis milling system under controlled conditions.

Settings And Design: The study employed an in vitro design with a stainless steel die model featuring a 6 mm axial wall height, a 6-degree total occlusal convergence, and a radial shoulder finish line.

Materials And Methods: Thirty stone dies were created from silicone impressions of the metal die and poured using type-IV dental stone.

View Article and Find Full Text PDF

On the analysis of adapting deep learning methods to hyperspectral imaging. Use case for WEEE recycling and dataset.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, C/ Geldo. Edificio 700, E-48160, Derio - Bizkaia, Spain; University of the Basque Country, Plaza Torres Quevedo, 48013 Bilbao, Spain.

Hyperspectral imaging, a rapidly evolving field, has witnessed the ascendancy of deep learning techniques, supplanting classical feature extraction and classification methods in various applications. However, many researchers employ arbitrary architectures for hyperspectral image processing, often without rigorous analysis of the interplay between spectral and spatial information. This oversight neglects the implications of combining these two modalities on model performance, consumption, and inference time.

View Article and Find Full Text PDF

A previous companion paper introduced a current pathways model that represents the electrical coupling between the Hall effect thruster (HET) and the ground-based vacuum test facility operational environment. In this work, we operated a 7-kW class HET at 4.5 kW, 15 A and 6 kW, 20 A on krypton to quantify aspects of the current pathways model to characterize the role metal vacuum chambers play in the thruster's discharge circuit as a function of discharge current.

View Article and Find Full Text PDF

Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92% conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes.

View Article and Find Full Text PDF

Objective: This study aims to compare the impact of titanium and stainless steel (SS) retainer wires on lower incisor stability and periodontal health.

Methods: Fifty patients between the ages of 14.1 and 29.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!