A balanced interaction between the homeostatic mechanisms of mother and the developing organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpredictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute consequences (e.g., growth impairment) and sometimes delayed (e.g., enhanced susceptibility to disease) that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH) plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504167PMC
http://dx.doi.org/10.3389/fendo.2017.00161DOI Listing

Publication Analysis

Top Keywords

corticotropin-releasing hormone
8
neonatal life
8
maternal care
8
crh actions
8
hormone homeostatic
4
homeostatic rheostat
4
rheostat feto-maternal
4
feto-maternal symbiosis
4
symbiosis developmental
4
developmental programming
4

Similar Publications

Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA receptor-deficient mice.

Neuropharmacology

January 2025

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain. Electronic address:

Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA-null mice of both sexes.

View Article and Find Full Text PDF

Elevated cortisol in chronic stress and mood disorders causes morbidity including metabolic and cardiovascular diseases. There is therefore interest in developing drugs that lower cortisol by targeting its endocrine pathway, the hypothalamic-pituitary-adrenal (HPA) axis. However, several promising HPA-modulating drugs have failed to reduce long-term cortisol in mood disorders, despite effectiveness in other hypercortisolism conditions such as Cushing's syndrome.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) has been shown in multiple studies to be associated with the estimated glomerular filtration rate (eGFR). However, studies focusing on Chinese populations are lacking. We conducted an epigenome-wide association study to investigate the association between DNAm and eGFR in Chinese monozygotic twins.

View Article and Find Full Text PDF

Increasing evidence supports the presence of oxytocin deficiency (OXT-D) in patients with hypopituitarism and hypothalamic damage (HHD), that might be associated with neuropsychological deficits and sexual dysfunction, leading to worse quality of life (QoL). Therefore, identifying a provocative test to diagnose an OXT-D will be important. Corticotropin-releasing hormone (CRH) is a candidate for such a test as it increases oxytocin secretion in animal models.

View Article and Find Full Text PDF
Article Synopsis
  • Peripuberty is a crucial time for brain development, and blocking CRFR1 receptors in young rats helps minimize negative effects of early-life stress on neural function and behavior.
  • In an experiment, male rats showed immediate behavioral changes like reduced prepulse inhibition (PPI) after receiving a CRFR1 antagonist, while females only exhibited differences in behavior after becoming adults.
  • Long-term gene expression changes in the amygdala indicate that the effects of CRFR1 blockage during peripuberty impact different neural pathways in males and females, emphasizing the importance of understanding these effects for adolescent mental health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!