Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent.

Front Neuroinform

Brain-Machine Interface Systems Lab, Systems Engineering and Automation Department, Miguel Hernández University of ElcheElche, Spain.

Published: July 2017

The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504298PMC
http://dx.doi.org/10.3389/fninf.2017.00045DOI Listing

Publication Analysis

Top Keywords

bci model
16
best bci
12
offline pseudo-online
8
bci models
8
detect pedaling
8
personalized bci
8
feature extraction
8
bci
6
personalized offline
4
pseudo-online bci
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!