Circadian Metabolomics in Time and Space.

Front Neurosci

Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at HoustonHouston, TX, United States.

Published: July 2017

Circadian rhythms are widely known to govern human health and disease, but specific pathogenic mechanisms linking circadian disruption to metabolic diseases are just beginning to come to light. This is thanks in part to the development and application of various "omics"-based tools in biology and medicine. Current high-throughput technologies allow for the simultaneous monitoring of multiple dynamic cellular events over time, ranging from gene expression to metabolite abundance and sub-cellular localization. These fundamental temporal and spatial perspectives have allowed for a more comprehensive understanding of how various dynamic cellular events and biochemical processes are related in health and disease. With advances in technology, metabolomics has become a more routine "omics" approach for studying metabolism, and "circadian metabolomics" (i.e., studying the 24-h metabolome) has recently been undertaken by several groups. To date, circadian metabolomes have been reported for human serum, saliva, breath, and urine, as well as tissues from several species under specific disease or mutagenesis conditions. Importantly, these studies have consistently revealed that 24-h rhythms are prevalent in almost every tissue and metabolic pathway. Furthermore, these circadian rhythms in tissue metabolism are ultimately linked to and directed by internal 24-h biological clocks. In this review, we will attempt to put these data-rich circadian metabolomics experiments into perspective to find out what they can tell us about metabolic health and disease, and what additional biomarker potential they may reveal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504240PMC
http://dx.doi.org/10.3389/fnins.2017.00369DOI Listing

Publication Analysis

Top Keywords

health disease
12
circadian metabolomics
8
circadian rhythms
8
dynamic cellular
8
cellular events
8
circadian
6
metabolomics time
4
time space
4
space circadian
4
rhythms govern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!