Serum amyloid A (SAA) is an acute-phase plasma protein that functions in innate immunity and lipid homeostasis. SAA is a protein precursor of reactive AA amyloidosis, the major complication of chronic inflammation and one of the most common human systemic amyloid diseases worldwide. Most circulating SAA is protected from proteolysis and misfolding by binding to plasma high-density lipoproteins. However, unbound soluble SAA is intrinsically disordered and is either rapidly degraded or forms amyloid in a lysosome-initiated process. Although acidic pH promotes amyloid fibril formation by this and many other proteins, the molecular underpinnings are unclear. We used an array of spectroscopic, biochemical, and structural methods to uncover that at pH 3.5-4.5, murine SAA1 forms stable soluble oligomers that are maximally folded at pH 4.3 with ∼35% α-helix and are unusually resistant to proteolysis. In solution, these oligomers neither readily convert into mature fibrils nor bind lipid surfaces via their amphipathic α-helices in a manner typical of apolipoproteins. Rather, these oligomers undergo an α-helix to β-sheet conversion catalyzed by lipid vesicles and disrupt these vesicles, suggesting a membranolytic potential. Our results provide an explanation for the lysosomal origin of AA amyloidosis. They suggest that high structural stability and resistance to proteolysis of SAA oligomers at pH 3.5-4.5 help them escape lysosomal degradation, promote SAA accumulation in lysosomes, and ultimately damage cellular membranes and liberate intracellular amyloid. We posit that these soluble prefibrillar oligomers provide a missing link in our understanding of the development of AA amyloidosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559045PMC
http://dx.doi.org/10.1073/pnas.1707120114DOI Listing

Publication Analysis

Top Keywords

serum amyloid
8
forms stable
8
disrupt vesicles
8
reactive amyloidosis
8
oligomers
6
saa
6
amyloid
5
amyloid forms
4
stable oligomers
4
oligomers disrupt
4

Similar Publications

Objective: In humans, haptoglobin (Hp) exists in two allelic forms, Hp1 and Hp2, that differ significantly in their ability to protect the organism from oxidative stress. It has been proposed that in patients with diabetes mellitus carriers of the Hp2-2 genotype may benefit from vitamin E supplementation. Aim of our study was to investigate if there is evidence regarding a potential interaction between the Hp polymorphism and vitamin E with regard to mortality in individuals at medium-to-high cardiovascular risk with and without diabetes mellitus.

View Article and Find Full Text PDF

The question of strains in AA amyloidosis.

Sci Rep

January 2025

Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, C11, 75185, Uppsala, Sweden.

The existence of transmissible amyloid fibril strains has long intrigued the scientific community. The strain theory originates from prion disorders, but here, we provide evidence of strains in systemic amyloidosis. Human AA amyloidosis manifests as two distinct clinical phenotypes called common AA and vascular AA.

View Article and Find Full Text PDF

Amyloid capture and aggregation inhibition by human serum albumin.

Int J Biol Macromol

January 2025

Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain. Electronic address:

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) aggregation, primarily involving the peptides Aβ40 and Aβ42. Human serum albumin (HSA) has emerged as a potential therapeutic agent due to its ability to bind Aβ, inhibit aggregation, and promote disaggregation. This study quantitatively examined the interactions of HSA with both monomeric and aggregated forms of Aβ40 and Aβ42 using fluorescence techniques, including bulk steady-state fluorescence, fluorescence anisotropy, time-resolved fluorescence, and Fluorescence Correlation Spectroscopy (FCS).

View Article and Find Full Text PDF

Porcine Serum Amyloid A3 Promotes the Adhesion, Invasion, and Proliferation of Actinobacillus pleuropneumoniae.

Microb Pathog

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China. Electronic address:

The spread of Porcine contagious pleuropneumonia (PCP), a severe disease that occurs in pigs caused by Actinobacillus pleuropneumoniae (APP), remains a threat to the porcine farms and has been known to cause severe economic losses. Serum amyloid A (SAA) is an acute-phase protein rapidly expressed in response to infection and inflammation in vertebrates. This study aimed to investigate the function of SAA3 in bacterial infections.

View Article and Find Full Text PDF

Objective: This cross-sectional study aimed to investigate the salivary profile of inflammatory mediators in individuals with periodontal and peri-implant disease as compared to individuals with periodontal and peri-implant health.

Materials And Methods: Saliva samples were collected from 155 participants (mean age 63.3 ± 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!