AI Article Synopsis

  • The rising threat of metallo-beta-lactamases (MBLs) in Gram-negative pathogens is a significant global public health issue, particularly in low-income countries like Nepal, where surveillance is crucial for controlling their spread and developing effective antimicrobial policies.
  • A study conducted at Nepal Medical College assessed MBL prevalence in ceftazidime-resistant Gram-negative rods from May to October 2014, using standardized microbiological methods and the Kirby-Bauer disc diffusion technique.
  • The results indicated that 5.80% of isolates were MBL positive, primarily found in Acinetobacter spp. (85.71%) and P. aeruginosa (14.29%), highlighting the urgency for enhanced monitoring and rapid detection systems for antibiotic resistance in these

Article Abstract

Background: A rising threat of the rapid spread of acquired metallo-beta-lactamases (MBLs) among major Gram-negative pathogens is a matter of public health concern worldwide. Hence, for a low income nation like Nepal, surveillance data on MBL producing clinical isolates via a cost effective technique is necessary to prevent their dissemination as well as formulation and regulation of antimicrobial stewardship policy.

Methods: The prospective study was conducted at Nepal Medical College, Kathmandu from May to October, 2014 to assess the prevalence of MBL production among ceftazidime-resistant Gram-negative rods (GNRs) isolates. The samples were processed according to standard microbiological procedure following the Manual of clinical Microbiology. Isolated GNRs were subjected to susceptibility testing against the selected panel of antibiotics by Kirby- Bauer disc diffusion method and interpretation made in conformity with the Clinical and Laboratory Standards Institute (CLSI) guidelines. Ceftazidime-resistant isolates were subjected to the detection of MBL production by imipenem-EDTA combined disc (CD) method.

Results: Among the Gram-negative isolates, 5.80% (21/362) were found to be MBL positive with Acinetobacter spp. showing the highest prevalence i.e. 85.71% (18/21), followed by P. aeruginosa i.e. 14.29% (3/21). None of the other cefazidime resistant gram negative bacteria tested were found to be positive for MBL production with all the positive isolates determined to be Multidrug resistant (MDR) strains.

Conclusion: This study demonstrated a higher rate of resistance among P. aeruginosa and Acinetobacter spp. to a wide variety of antibiotic categories with an additional burden of MBL production within them, warranting a need for strict surveillance and rapid detection of MBL production among the GNRs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526278PMC
http://dx.doi.org/10.1186/s13104-017-2640-7DOI Listing

Publication Analysis

Top Keywords

mbl production
20
gram negative
8
negative bacteria
8
detection mbl
8
acinetobacter spp
8
mbl
7
isolates
5
production
5
hospital based
4
based surveillance
4

Similar Publications

National Multicenter Study on the Prevalence of Carbapenemase-Producing Enterobacteriaceae in the Post-COVID-19 Era in Argentina: The RECAPT-AR Study.

Antibiotics (Basel)

November 2024

Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistant, National Institute of Infectious Diseases (INEI), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G Malbrán", Ave. Velez Sarsfield 563, Buenos Aires City 1281, Argentina.

Unlabelled: The COVID-19 pandemic has exacerbated the global antimicrobial resistance (AMR) crisis. Consequently, it is more urgent than ever to prioritize AMR containment and support countries in improving the detection, characterization, and rapid response to emerging AMR threats. We conducted a prospective, multicenter study to assess the prevalence of carbapenemase-producing Enterobacterales in infectious processes in Argentina during the post-COVID-19 pandemic period and explore therapeutic alternatives for their treatment (RECAPT-AR study).

View Article and Find Full Text PDF

Clinical aspects and characterization of Pseudomonas aeruginosa isolated from patients infected with SARS-CoV-2.

Microb Pathog

December 2024

Master's in Health Sciences, Universidade do Oeste Paulista/UNOESTE, Rua José Bongiovani, 700 - Cidade Universitária, CEP: 19050-920, Presidente Prudente, SP, Brazil; Program of Animal Science, Universidade do Oeste Paulista/UNOESTE, Rua José Bongiovani, 700 - Cidade Universitária, CEP: 19050-920, Presidente Prudente, SP, Brazil. Electronic address:

Aims: This study aimed to identify and characterize Pseudomonas aeruginosa isolates from patients infected and uninfected with SARS-CoV-2, focusing on their phenotypic characteristics and antimicrobial resistance profiles.

Main Methods: A total of 100 P. aeruginosa isolates were obtained from patients admitted to a hospital in Presidente Prudente, SP, in 2021.

View Article and Find Full Text PDF

Background: Klebsiella pneumoniae is a clinically relevant pathogen that has raised considerable public health concerns. This study aims to determine the presence of beta-lactamase genes and perform molecular genotyping of multidrug-resistant (MDR) K. pneumoniae clinical isolates.

View Article and Find Full Text PDF

Endophthalmitis is a serious infectious eye disease that causes permanent vision loss. This study developed a method for rapid identification and drug resistance analysis of pathogens in vitreous humor. After short-term rapid culture, 30 Staphylococcus aureus isolates were enriched and purified from the vitreous humor using Fc-MBL@FeO, and then identified by MALDI-TOF MS.

View Article and Find Full Text PDF

First Clinical Application of Aztreonam-Avibactam in Treating Carbapenem-Resistant Enterobacterales: Insights from Therapeutic Drug Monitoring and Pharmacokinetic Simulations.

J Pers Med

November 2024

Department of Anesthesiology and Intensive Care Medicine, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.

: A novel fixed combination of aztreonam (ATM) and avibactam (AVI) offers promising potential to treat infections with carbapenem-resistant (CRE) producing metallo-β-lactamases (MBL). This study aimed to assess the accuracy of population pharmacokinetic (PK) models for ATM-AVI in predicting in vivo concentrations in a critically ill patient with CRE infection during its first clinical use. : A 70-year-old male with septic shock due to hospital-acquired pneumonia (HAP) caused by MBL-producing was treated with ATM-AVI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!