Background: Echovirus 6 (E6) infections are associated with aseptic meningitis and acute flaccid paralysis (AFP). But some infections, sometimes most of them, are asymptomatic. The mechanism of E6 virulence is unknown. Analyses of the molecular evolution of asymptomatic E6 may help understand why the infections show different manifestations.
Methods: Ninety-six stool samples of healthy children in Yunnan, China were collected and two E6 strains were isolated from them. The whole genomes of these two E6 strains were sequenced, and their molecular evolution was analyzed.
Results: The results showed that the two E6 strains may be derived from KJ7724XX strains, which were predominant in AFP patients in Shangdong in 2011. The evolution was accelerated when the two E6 strains formed, although no positive selection site was found. The 11 exclusive mutations on which selection force significantly changed were found in the 2C, 3AB and 3C genes.
Conclusion: There are some E6 strains which did not cause the disease in the children of Yunnan. These E6 strains maybe come from a recombinant E6 strain which was associated with the outbreak of AFP in Shangdong in 2011. However, some new mutations were found in the 2C, 3AB and 3C genes of these asymptomatic strains, and these mutations may be constraint by the natural selection and could be potentially responsible for clinical presentations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526271 | PMC |
http://dx.doi.org/10.1186/s12985-017-0809-2 | DOI Listing |
J Mol Model
January 2025
Shanxi Jiangyang Chemical Limited Company, Taiyuan, 030041, Shanxi, China.
Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.
View Article and Find Full Text PDFJ Mol Evol
January 2025
Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.
Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).
View Article and Find Full Text PDFHematol Oncol
January 2025
University of California Irvine, Irvine, California, USA.
Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Plant individuals within a species can differ markedly in their leaf chemical composition, forming so-called chemotypes. Little is known about whether such differences impact the microbial communities associated with leaves and how different environmental conditions may shape these relationships. We used Tanacetum vulgare as a model plant to study the impacts of maternal effects, leaf terpenoid chemotype, and the environment on the leaf bacterial community by growing plant clones in the field and a greenhouse.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom.
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!