Reactive CeO nanofluids for UV protective films.

J Colloid Interface Sci

School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA. Electronic address:

Published: November 2017

We investigate surface modification by organo-trimethoxysilanes of nano-ceria and if such surface-modified nano-ceria can be transformed into solvent-free nanofluids. We also examine whether simultaneous modification with ionic liquid salts and with acrylate groups yields nanofluids suitable for forming UV-protective films and clear coatings by UV-initiated polymerization. Nominally 3nm diameter CeO was successfully synthesized and surface decorated with an ionic liquid salt and with acrylate groups to produce a core/shell structured solvent-free nanofluid after ion exchange of chloride for a soft polyoxyethylene sulfonate anion. This room temperature nanofluid melts at about -10°C and exhibits a glass transition at about -71°C. The melting enthalpy, about 19J/g, corresponds approximately to the gain in surface free energy of such nanofluid particles upon transforming from the solid state to liquid state. Robust films were made by UV photoinitiation of this nanofluid in combination with ethylene glycol dimethacrylate and with a polyoxyethylene diacrylate to yield cross-linked films with absorption coefficients α=6.6±0.8cm/mg and α=24.5±3.5cm/mg. Average near UV protection over 300-350nm of 1-3 optical density units can be obtained with 0.065-0.19mg/cm of CeO. These materials appear almost three-fold more effective, per unit ceria, than previously reported clearcoats of nanoceria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.07.067DOI Listing

Publication Analysis

Top Keywords

ionic liquid
8
acrylate groups
8
reactive ceo
4
ceo nanofluids
4
nanofluids protective
4
films
4
protective films
4
films investigate
4
investigate surface
4
surface modification
4

Similar Publications

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).

View Article and Find Full Text PDF

Rubrene is one of the leading organic semiconductors in scientific and industrial research, showing good conductivities and utilities in devices such as organic field-effect transistors. In these applications, the rubrene crystals often contact ionic liquids and other materials. Consequently, their surface properties and interfacial interactions influence the device's performance.

View Article and Find Full Text PDF

The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface.

View Article and Find Full Text PDF

Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!