Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graphene as a 2-dimentional material has been widely used in the field of biomedical applications. In this study, molecular dynamics simulations are carried out on the fibrinopeptide-A and graphene surfaces with N and O modifications. A new set of parameters for the CHARMM force field are developed to describe the behaviors of the surfaces. Our results indicate that the existence of most oxygen and nitrogen groups may enhance the interaction between the surfaces and the peptide, whereas the substitutional nitrogen on the graphene surface does not make a big difference. The improvement of interaction is not only because of the functional group on the surface, but also the defective morphology. The defective morphology also clears away the surface water layer. Our results suggest that the interactions between graphene biomolecules can be affected by functionalizing the surface with different types of functional groups, which is in accordance with the theory of material design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.7b07170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!