The identification and characterization of germ cell-specific genes are essential if we hope to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here, we searched the mouse UniGene databases and identified 13 novel genes as being putatively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the expressions of these genes are testis- and germ cell-specific, and that they are regulated in a stage-specific manner during spermatogenesis. We generated antibodies against the proteins encoded by seven of the genes to facilitate their characterization in male germ cells. Immunoblotting and immunofluorescence analyses revealed that one of these proteins was expressed only in testicular germ cells, three were expressed in both testicular germ cells and testicular sperm, and the remaining three were expressed in sperm of the testicular stages and in mature sperm from the epididymis. Further analysis of the latter three proteins showed that they were all associated with cytoskeletal structures in the sperm flagellum. Among them, MORN5, which is predicted to contain three MORN motifs, is conserved between mouse and human sperm. In conclusion, we herein identify 13 authentic genes with male germ cell-specific expression, and provide comprehensive information about these genes and their encoded products. Our finding will facilitate future investigations into the functional roles of these novel genes in spermatogenesis and sperm functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526581 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182038 | PLOS |
Front Genome Ed
January 2025
State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China.
Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.
View Article and Find Full Text PDFDevelopment
January 2025
School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
A successful mitosis-to-meiosis transition in germ cells is essential for fertility in sexually reproducing organisms. In mice and humans, it is established that expression of STRA8 is critical for meiotic onset in both sexes. Here we show that BMP signalling is also essential, not for STRA8 induction but for correct meiotic progression in female mouse fetal germ cells.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: Heterogeneous nuclear ribonucleoprotein M (HnRNPM) is a key splicing factor involved in various biological processes, including the epithelial‒mesenchymal transition and cancer development. Alternative splicing is widely involved in the process of spermatogenesis. However, the function of hnRNPM as a splicing factor during spermatogenesis remains unknown.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.
View Article and Find Full Text PDFBiomedicines
November 2024
Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
: Non-obstructive azoospermia (NOA) is a severe form of male infertility characterized by the absence of sperm in the ejaculate due to impaired spermatogenesis. Testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection is the primary treatment, but success rates are unpredictable, causing significant emotional and financial burdens. Traditional clinical and hormonal predictors have shown inconsistent reliability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!