Fetal brain ultrasound remains as the mainstay for screening fetal intracranial anatomy. One of its main advantages is the availability of 3 dimensional and other ultrasound modalities for a better understanding of fetal neurodevelopment. Neurosonography is performed when findings, suggestive of an abnormality, are present on a screening ultrasound or if a high-risk situation of brain injury is present. This technique offers the use of complementary imaging planes, axial, coronal and sagittal, and the ability to image intracranial anatomy from the transabdominal and transvaginal approaches. Fetal brain magnetic resonance imaging is more sensitive than ultrasound. As an adjunctive imaging modality, magnetic resonance imaging offers additional sequences to complete the information on neurodevelopment from different perspectives, such as brain metabolism, microstructure, and connectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/GRF.0000000000000307 | DOI Listing |
Front Physiol
January 2025
Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Introduction: Access to electric light has exposed living organisms to varying intensities of light throughout the 24 h day. Dim light at night (DLAN) is an inappropriate signal for the biological clock, which is responsible for the circadian organization of physiology. During the gestational period, physiological adaptations occur to ensure a successful pregnancy and optimal fetal development.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Background: Diffusion-derived 'vessel density' (DDVD) is a surrogate of the area of micro-vessels per unit tissue. DDVD is calculated according to: DDVD (b0b50) = Sb0/ROIarea0 - Sb50/ROIarea50, where Sb0 and Sb50 refer to the tissue signal when is 0 or 50 s/mm. Due to the complexity of pre-eclampsia (PE), even a combination of risk factors and available tests cannot accurately diagnose or predict PE.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Developing Brain Institute, Children's National Hospital, Washington, D.C., USA.
The biochemical composition and structure of the brain are in a rapid change during the exuberant stage of fetal and neonatal development. H-MRS is a noninvasive tool that can evaluate brain metabolites in healthy fetuses and infants as well as those with neurological diseases. This review aims to provide readers with an understanding of 1) the basic principles and technical considerations relevant to H-MRS in the fetal-neonatal brain and 2) the role of H-MRS in early fetal-neonatal development brain research.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
Background: At high magnetic fields, degraded image quality due to dielectric artifacts and elevated specific absorption rate (SAR) are two technical challenges in fetal MRI.
Purpose: To assess the potential of high dielectric constant (HDC) pad in increasing image quality and decreasing SAR for 3 T fetal MRI.
Study Type: Prospective.
Front Neuroanat
January 2025
Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, India.
The inferior colliculus (IC) is an important midbrain station of the auditory pathway, as well as an important hub of multisensory integration. The adult mammalian IC can be subdivided into three nuclei, with distinct cyto- and myeloarchitectonical profiles and distinct calcium binding proteins expression patterns. Despite several studies about its structural and functional development, the knowledge about the human fetal IC is rather limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!