Kinetic-Dominated Charging Mechanism within Representative Aqueous Electrolyte-based Electric Double-Layer Capacitors.

J Phys Chem Lett

State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.

Published: August 2017

AI Article Synopsis

  • The study examines how the chemical nature of electrolytes affects the charge storage in electric double-layer capacitors (EDLCs), revealing ongoing debates about the primary mechanisms involved.
  • A new charging mechanism focused on kinetics rather than just structural changes is identified, indicating that unique electric double-layer (EDL) structures can yield similar capacitance despite differences in ion sizes and types.
  • The research shows that ion-solvent interactions play a significant role in the kinetics and performance of EDLCs, challenging traditional theories and emphasizing the importance of electrolyte design.

Article Abstract

The chemical nature of electrolytes has been demonstrated to play a pivotal role in the charge storage of electric double-layer capacitors (EDLCs), whereas primary mechanisms are still partially resolved but controversial. In this work, a systematic exploration into EDL structures and kinetics of representative aqueous electrolytes is performed with numerical simulation and experimental research. Unusually, a novel charging mechanism exclusively predominated by kinetics is recognized, going beyond traditional views of manipulating capacitances preferentially via interfacial structural variations. Specifically, strikingly distinctive EDL structures stimulated by diverse ion sizes, valences, and mixtures manifest a virtually identical EDL capacitance, where the dielectric nature of solvents attenuates ionic effects on electrolyte redistributions, in stark contradiction with solvent-free counterpart and traditional Helmholtz theory. Meanwhile, corresponding kinetics evolve conspicuously with ionic species, intimately correlated with ion-solvent interactions. The achieved mechanisms are subsequently illuminated by electrochemical measurements, highlighting the crucial interplay between ions and solvents in regulating EDLC performances.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.7b01525DOI Listing

Publication Analysis

Top Keywords

charging mechanism
8
representative aqueous
8
electric double-layer
8
double-layer capacitors
8
edl structures
8
kinetic-dominated charging
4
mechanism representative
4
aqueous electrolyte-based
4
electrolyte-based electric
4
capacitors chemical
4

Similar Publications

Heavy Neutral Leptons via Axionlike Particles at Neutrino Facilities.

Phys Rev Lett

December 2024

Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

Heavy neutral leptons (HNLs) are often among the hypothetical ingredients behind nonzero neutrino masses. If sufficiently light, they can be produced and detected in fixed-target-like experiments. We show that if the HNLs belong to a richer-but rather generic-dark sector, their production mechanism can deviate dramatically from expectations associated with the standard-model weak interactions.

View Article and Find Full Text PDF

NH-MIL-125(Ti) and its functional nanomaterials - a versatile platform in the photocatalytic arena.

Nanoscale

January 2025

Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.

Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.

View Article and Find Full Text PDF

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

Removal of Cr(VI) from aqueous solutions by activated carbon and its composite with PWO: A spectroscopic study to reveal adsorption mechanism.

Heliyon

January 2025

Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.

Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.

View Article and Find Full Text PDF

The growing incidence of infections caused by antibiotic-resistant strains of pathogens is one of the key challenges of the 21 century. The development of novel technological platforms based on single-cell analysis of antibacterial activity at the whole-microbiome level enables the transition to massive screening of antimicrobial agents with various mechanisms of action. The microbiome of wild animals remains largely underinvestigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!