The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid-mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self-transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4-mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%-97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.14255 | DOI Listing |
PLoS One
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.
View Article and Find Full Text PDFAIDS Patient Care STDS
January 2025
Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA.
Bacterial sexually transmitted diseases (STDs) remain prominent in the United States among gay, bisexual, and other men who have sex with men (GBMSM). Doxycycline for post-exposure prophylaxis (DoxyPEP) is a regimen by which the antibiotic doxycycline is taken after sex to prevent bacterial STDs, such as, chlamydia, gonorrhea, and syphilis. Despite this, this study was conducted because there are a limited number of publications that describe GBMSM's knowledge of, and interest in, taking DoxyPEP and preferences regarding its implementation.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
University of Sassari, Sassari, Italy.
Introduction: Ceftazidime-avibactam (CAZ-AVI) has emerged as a promising treatment option for Gram-negative infections, particularly those caused by CAZ-Non-Susceptible (NS) pathogens. This systematic review and meta-analysis aim to assess the efficacy and safety of CAZ-AVI in these challenging infections.
Methods: We systematically queried EMBASE, Cochrane CENTRAL, and PubMed/Medline for studies published until September 15, 2024.
PLoS Biol
January 2025
Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!