Carbohydrate content and glycosidase activities following cold hardening in two grass species.

Physiol Plant

Norwegian Plant Protection Inst., Fellesbygget, N-1432 Ås, Norway;Laboratory of Microbial Gene Technology NLVF, PO Box 5051, N-1432 Ås, Norway;Dept of Biotechnological Sciences, Agricultural Univ. of Norway, PO Box 5040, N-1432 Ås, Norway.

Published: August 1993

The freezing resistance of the grass species Phleum pratense L. (timothy) and Phalaris arundinaces L. increases significantly after cold hardening. The content and composition of soluble carbohydrates were determined in the plants after short day treatment, cold hardening and dehardening. The amounts of mono-, di- and trisaccharides were reduced during the short day treatment, increased during cold hardening and decreased again during dehardening. The total amounts of soluble carbohydrates (mono-, di-, tri- and polysaccharides) were the same in hardened and dehardened plants, indicating that during hardening soluble polysaccharides (fructose polymers, fructans) were converted to mono- and oligosaccharides. Sucrose increased most after hardening conditions and, in P. arundinacea, a significant increase in 1-F-fructosylsucrose (isokestose) was also observed. Invertase (β-fructofuranosidase. EC 3.2.1.26) activity increased following cold hardening and decreased following dehardening, while the α-galactosidase (EC 3.2.1.22) activity seemed to increase after dehardening. The glycosidases are probably involved in the mobilisation of polysaccharides during cold hardening.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3054.1993.tb01390.xDOI Listing

Publication Analysis

Top Keywords

cold hardening
24
hardening
8
grass species
8
soluble carbohydrates
8
short day
8
day treatment
8
mono- di-
8
increased cold
8
hardening decreased
8
decreased dehardening
8

Similar Publications

In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.

View Article and Find Full Text PDF

High-performance lightweight materials are urgently needed because of energy savings and emission reduction. Here, we design a new steel with a low density of 6.41 g/cm, which is a 20% weight reduction compared to the conventional steel.

View Article and Find Full Text PDF

The adaptation of 3D printing techniques within the construction industry has opened new possibilities for designing and constructing cementitious materials efficiently and flexibly. The layered nature of extrusion-based concrete printing introduces challenges, such as interlayer weaknesses, that compromise structural integrity and mechanical performance. This experimental study investigates the influence of interlayer orientation and the presence of cold joints (CJ) on mechanical properties, such as stiffness and strength.

View Article and Find Full Text PDF

Face-centered cubic (FCC)-structured high-entropy alloys (HEAs) are facing a major challenge due to a trade-off between strength and ductility. In this paper, we systematically investigated the microstructural evolution and tensile properties of metastable dual-phase (DP) FeMnCoCr HEAs via cold rolling and partial recrystallized annealing, which resulted in a heterogeneous microstructure, and by inducing strengthening and strain-hardening through heterogeneous deformation-induced (HDI) strategies. The results show that the alloy was annealed at 600 °C for 10 min, exhibiting a good combination of strength and ductility.

View Article and Find Full Text PDF

This study selected 17-4PH (Type 630) precipitation-hardening stainless steel as the raw material. After subjecting the material to precipitation hardening and softening heat treatments, the effects of these treatments on the microstructural characteristics and mechanical properties were investigated, along with a thermal fatigue test. The results showed that after the precipitation hardening heat treatment, the ultimate tensile strength and hardness of 17-4PH stainless steel increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!