From several years, the anticancer effects of Vγ9 T lymphocytes make these cells good candidates for cancer immunotherapies. However, the proved efficacy of γδ Τ cell-based cancer immunotherapies in some clinical trials was minimized due to the inherent toxicity of IL-2, which is essential for the combination therapy with Phosphoantigen (PAg). Recently, we showed that IL-33, a γ chain receptor-independent cytokine, was able to induce the in vitro proliferation of PAg-activated Vγ9 T cells, which were fully functional expressing IFN-γ and TNF-α and showing in vitro anti-tumor cytotoxicity. We proposed IL-33 as an alternative to IL-2 for Vγ9 T cell-based cancer immunotherapies, and have therefore evaluated the efficacy of this cytokine in preclinical investigations. This study shows that human Vγ9 T cells are able to proliferate in a mouse model with the combination of PAg and rhIL-33, and that IL-33-expanded Vγ9 T cells can prevent tumor growth in a mouse lymphoma model.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201747093DOI Listing

Publication Analysis

Top Keywords

cancer immunotherapies
12
vγ9 t cells
12
vγ9
5
il-33-expanded human
4
human vγ9vδ2
4
t cells
4
vγ9vδ2 t cells
4
t cells anti-lymphoma
4
anti-lymphoma mouse
4
mouse tumor
4

Similar Publications

Recent Advancements in Drug Targeting for Ferroptosis as an Antitumor Therapy: Development of Novel therapeutics.

Curr Cancer Drug Targets

January 2025

Department of Chemistry, Siddhachalam Laboratory, Raipur, 493221, Chhattisgarh, India.

Objectives: The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.

Methods: To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nano-medicine, TCM, and Western medicine.

View Article and Find Full Text PDF

MicroRNA (miRNA) modulation has emerged as a promising strategy in cancer immunotherapy, particularly in converting "cold" tumors with limited immune cell infiltration into "hot" tumors responsive to immunotherapy. miRNAs regulate immune cell recruitment and activation within the tumor microenvironment, influencing tumor behavior targeting specific miRNAs in cold tumors aims to enhance the immune response, potentially improving therapeutic efficacy. Despite ongoing research challenges, such as tumor complexity and treatment resistance, miRNA-based therapies offer personalized approaches with potential ethical considerations.

View Article and Find Full Text PDF

Despite advances in multimodal cancer therapy, such as combining radical surgery with high-intensity chemoradiotherapy, for SMARCB1/INI-1-deficient sinonasal carcinoma (SDSC), the prognosis of patients remains poor. Immunotherapy is gaining increasing popularity as a novel treatment strategy for patients with SMARCB1/INI-1-deficient tumors. Herein, we report on the management of three patients with SDSC who received PD-1/PD-L1 inhibitor therapy as a part of multimodal therapy based on surgery and chemoradiotherapy.

View Article and Find Full Text PDF

Parathyroid carcinoma (PC) is one of the rarest malignant neoplasms of the human endocrine system, with a prevalence of approximately 0.005% of all oncological diseases. Despite its indolent course, PC generally relapses in about 40%-60% of cases.

View Article and Find Full Text PDF

Decoding the Molecular Basis of the Specificity of an Anti-sTn Antibody.

JACS Au

January 2025

UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

The mucin -glycan sialyl Tn antigen (sTn, Neu5Acα2-6GalNAcα1--Ser/Thr) is an antigen associated with different types of cancers, often linked with a higher risk of metastasis and poor prognosis. Despite efforts to develop anti-sTn antibodies with high specificity for diagnostics and immunotherapy, challenges in eliciting high-affinity antibodies for glycan structures have limited their effectiveness, leading to low titers and short protection durations. Experimental structural insights into anti-sTn antibody specificity are lacking, hindering their optimization for cancer cell recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!