The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.13037DOI Listing

Publication Analysis

Top Keywords

erf-vii activity
8
developmental stage
8
age-dependent regulation
4
erf-vii
4
regulation erf-vii
4
erf-vii transcription
4
transcription factor
4
factor activity
4
activity arabidopsis
4
arabidopsis thaliana
4

Similar Publications

Biotic and abiotic stresses frequently co-occur in nature, yet relatively little is known about how plants coordinate the response to combined stresses. Protein degradation by the ubiquitin/proteasome system is central to the regulation of multiple independent stress response pathways in plants. The Arg/N-degron pathway is a subset of the ubiquitin/proteasome system that targets proteins based on their N-termini and has been specifically implicated in the responses to biotic and abiotic stresses, including hypoxia, via accumulation of group VII ETHYLENE RESPONSE FACTOR (ERF-VII) transcription factors that orchestrate the onset of the hypoxia response program.

View Article and Find Full Text PDF

Oxygen limitation (hypoxia), arising as a key stress factor due to flooding, negatively affects plant development. Consequently, maintaining root growth under such stress is crucial for plant survival, yet we know little about the root system's adaptions to low-oxygen conditions and its regulation by phytohormones. In this study, we examine the impact of hypoxia and, herein, the regulatory role of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors on root growth in Arabidopsis.

View Article and Find Full Text PDF

Callus proliferation-induced hypoxic microenvironment decreases shoot regeneration competence in Arabidopsis.

Mol Plant

March 2024

Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea. Electronic address:

Plants are aerobic organisms that rely on molecular oxygen for respiratory energy production. Hypoxic conditions, with oxygen levels ranging between 1% and 5%, usually limit aerobic respiration and affect plant growth and development. Here, we demonstrate that the hypoxic microenvironment induced by active cell proliferation during the two-step plant regeneration process intrinsically represses the regeneration competence of the callus in Arabidopsis thaliana.

View Article and Find Full Text PDF

CPK12 and Ca-mediated hypoxia signaling.

Plant Signal Behav

December 2023

Department of Botany, Panjab University, Chandigarh, India.

Hypoxia triggers reactive oxygen species (ROS)-induced elevation in cytoplasmic calcium (Ca) in the plant cells. Calcium-dependent protein kinase 12 (CPK12) acts as a sensor to recognize the Ca signature and is activated by autophosphorylation. Then, the CPK12 moves into the nucleus with the help of phosphatidic acid (PA) and phosphorylates ERF-VII family proteins that activate hypoxia signaling and response.

View Article and Find Full Text PDF

Identification of novel plant cysteine oxidase inhibitors from a yeast chemical genetic screen.

J Biol Chem

December 2023

Plantlab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy. Electronic address:

Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!