A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superparamagnetic Gold Nanoparticles Synthesized on Protein Particle Scaffolds for Cancer Theragnosis. | LitMetric

Superparamagnetic Gold Nanoparticles Synthesized on Protein Particle Scaffolds for Cancer Theragnosis.

Adv Mater

Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 136-713, Republic of Korea.

Published: October 2017

Cancer theragnosis using a single multimodality agent is the next mainstay of modern cancer diagnosis, treatment, and management, but a clinically feasible agent with in vivo cancer targeting and theragnostic efficacy has not yet been developed. A new type of cancer theragnostic agent is reported, based on gold magnetism that is induced on a cancer-targeting protein particle carrier. Superparamagnetic gold-nanoparticle clusters (named SPAuNCs) are synthesized on a viral capsid particle that is engineered to present peptide ligands targeting a tumor cell receptor (TCR). The potent multimodality of the SPAuNCs is observed, which enables TCR-specific targeting, T -weighted magnetic resonance imaging, and magnetic hyperthermia therapy of both subcutaneous and deep-tissue tumors in live mice under an alternating magnetic field. Furthermore, it is analytically elucidated how the magnetism of the SPAuNCs is sufficiently induced between localized and delocalized spins of Au atoms. In particular, the SPAuNCs show excellent biocompatibility without the problem of in vivo accumulation and holds promising potential as a clinically effective agent for cancer theragnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201701146DOI Listing

Publication Analysis

Top Keywords

cancer theragnosis
12
protein particle
8
cancer
6
superparamagnetic gold
4
gold nanoparticles
4
nanoparticles synthesized
4
synthesized protein
4
particle scaffolds
4
scaffolds cancer
4
theragnosis cancer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!