Purpose: Although the DTL fiber electrode has been in use in the ERG field for more than four decades, its composition was never clearly defined. We compared five different types of conductive (DTL type) yarn (differing in terms of mass, number of filaments, and crimping degree) in order to determine whether we could identify one that would be better suited for the recording of ERGs.

Methods: Photopic flash ERGs were recorded from five subjects using the following DTL electrodes: 27/7, 22/1, 11/1, 11/1*2, and 22/1*2. Data analysis included amplitude and peak time measurements of the a- and b-waves in the time domain (TD) as well as measurements of specific frequency descriptors of the ERG waveform in the time-frequency domain using the discrete wavelet transform (DWT) approach. The degree of comfortableness was also assessed in 12 subjects with two surveys (Likert 5-point and the ranking scale).

Results: Comparisons of TD and DWT parameters did not permit to identify the best DTL electrode, all yielding comparable measures. There was a slight trend for the largest electrode (22/1*2) to yield the largest response, but this was at the expense of comfort, the 22/1*2 electrode being rated as the least comfortable.

Conclusions: Given the minimal impact the different electrodes had on the amplitude of the signal, we believe that comfort should dictate our choice. It would appear from our results that use of a multifilament electrode is the best choice since one can get an electrode whose size is optimized for the recording of large responses while minimizing the foreign-body sensation due to the small size of each of the filaments that compose this multifilament electrode.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10633-017-9600-3DOI Listing

Publication Analysis

Top Keywords

electrode
8
multifilament electrode
8
dtl
5
dtl erg
4
erg electrode
4
electrode shapes
4
shapes sizes
4
sizes good?
4
good? purpose
4
purpose dtl
4

Similar Publications

Enhanced Electrochemical Detection of Valganciclovir Using a Hierarchically Structured Lisianthus Flower-Inspired Bimetallic Ni-Ce Organic Framework.

Langmuir

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.

View Article and Find Full Text PDF

In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

December 2024

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.

View Article and Find Full Text PDF

Background: Delayed lead perforation is a rare complication of cardiac implantable electronic device (CIED). Clinical presentations range from completely asymptomatic to pericardial tamponade. Surgical lead extraction is recommended and transvenous lead extraction (TLE) with surgical backup is an alternative method.

View Article and Find Full Text PDF

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!