T lymphocytes are stimulated when they recognize short peptides bound to class I proteins of the major histocompatibility complex (MHC) protein, as peptide-MHC complexes. Due to the diversity in T-cell receptor (TCR) molecules together with both the peptides and MHC proteins they bind to, it has been difficult to design vaccines and treatments based on these interactions. Machine learning has made some progress in trying to predict the immunogenicity of peptide sequences in the context of specific MHC class I alleles but, as such approaches cannot integrate temporal information and lack explanatory power, their scope will always be limited. Here, we advocate a mechanistic description of antigen presentation and TCR activation which is explanatory, predictive, and quantitative, drawing on modeling approaches that collectively span several length and time scales, being capable of furnishing reliable biological descriptions that are difficult for experimentalists to provide. It is a form of multiscale systems biology. We propose the use of chemical rate equations to describe the time evolution of the foreign and host proteins to explain how the original proteins end up being presented on the cell surface as peptide fragments, while we invoke molecular dynamics to describe the key binding processes on the molecular level, including those of peptide-MHC complexes with TCRs which lie at the heart of the immune response. On each level, complementary methods based on machine learning are available, and we discuss the relationship between these divergent approaches. The pursuit of predictive mechanistic modeling approaches requires experimentalists to adapt their work so as to acquire, store, and expose data that can be used to verify and validate such models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502259 | PMC |
http://dx.doi.org/10.3389/fimmu.2017.00797 | DOI Listing |
Viruses
January 2025
Department of Ophthalmology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
COVID-19, caused by SARS-CoV-2, has presented formidable challenges to global health since its emergence in late 2019. While primarily known for respiratory symptoms, it can also affect the ocular surface. This review summarizes the effects of SARS-CoV-2 on ocular surface immunity and inflammation, focusing on infection mechanisms, immune responses, and clinical manifestations.
View Article and Find Full Text PDFNutrients
January 2025
Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, 80131 Naples, Italy.
Celiac disease (CeD) is a chronic, lifelong, multifactorial, polygenic, and autoimmune disorder, characteristically triggered by exposure to the exogenous factor "gluten" in genetically predisposed individuals, with resulting duodenal inflammation and enteropathy, as well as heterogeneous multisystemic and extraintestinal manifestations. The immunopathogenesis of CeD is complex, favored by a peculiar human leukocyte antigen (HLA) genetic predisposition, leading to gluten presentation by antigen-presenting cells to CD4+ T helper (Th) cells, T cell-B cell interactions, and production of specific antibodies, resulting in the immune-mediated killing of enterocytes and, macroscopically, in duodenal inflammation. Here, the most relevant correlations between cellular and molecular aspects and clinical manifestations of this complex disease are reviewed, with final considerations on nutritional aspects for disease management.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy.
In immunocompromised patients, pneumonia presents a diagnostic challenge due to diverse etiologies, nonspecific symptoms, overlapping radiological presentation, frequent co-infections, and the potential for rapid progression to severe disease. Thus, timely and accurate diagnosis of all pathogens is crucial. This narrative review explores the latest advancements in microbiological diagnostic techniques for pneumonia in immunocompromised patients.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran.
Traditionally, research on the adaptive immune system has focused on protein antigens, but emerging evidence has underscored the essential role of lipid antigens in immune modulation. Lipid antigens are presented by CD1 molecules and activate invariant natural killer T (iNKT) cells and group 1 CD1-restricted T cells, whereby they impact immune responses to pathogens and tumors. Recent advances in mass spectrometry, imaging techniques, and lipidomics have revolutionized the identification and characterization of lipid antigens and enhanced our understanding of their structural diversity and functional significance.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy.
Prostate cancer (PCa) is a high-prevalence disease usually characterized by metastatic spread to the pelvic lymph nodes and bones and the development of visceral metastases only in the late stages of disease. Positron Emission Tomography (PET) plays a key role in the detection of PCa metastases. Several PET radiotracers are used in PCa patients according to the stage and pathological features of the disease, in particular Ga/F-prostate-specific membrane antigen (PSMA) ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!