Mtb β-lactamase (BlaC) is extremely efficient in hydrolyzing ß-lactam antibiotics which renders/leads to protection and/or resistance to this bug. There is a compelling need to develop new non-lactam inhibitors which can bind and inhibit BlaC, but cannot be hydrolyzed, thus neutralizing this survival mechanism of Mtb. Using the crystal structure of BlaC we screened 750000 purchasable compounds from ZINC Database for their theoretical affinity to the enzyme's active site. 32 of the best hits of the compounds having tetra-, tri- and thiadi-azole moiety were tested in vitro, and 4 efficiently inhibited the enzymatic activity of recombinant BlaC. Characterization of the shape of BlaC-/+ inhibitors by small angle X-ray scattering (SAXS) brought forth that BlaC adopts: (1) an open shape (radius of gyration of 2.3 nm compared to 1.9 nm of crystal structures) in solution; (2) closed shape similar to observed crystal structure(s) in presence of effective inhibitor; and (3) a closed shape which opens up when a hydrolysable inhibitor is present in solution. New BlaC inhibitors were: 1-(4-(pyridin-3-yl)-thiazol-2-ylamino)-2-(7,8,9-triaza-bicyclo[4.3.0]nona-1(6),2,4,8-tetraen-7-yl)-ethanone; 8-butyl-3-((5-(pyridin-2-yl)-4H-1,2,4-triazol-3-ylamino)-formyl)-8-aza-bicyclo[4.3.0]nona-1(6),2,4-triene-7,9-dione; 1-(3-((5-(5-bromo-thiophen-2-yl)-1,3,4-oxadiazol-2-yl)-methoxy)-phenyl)-1H-1,2,3,4-tetraazole; and 1-(2,3-dimethyl-phenylamino)-2-(2-(1-(2-methoxy-5-methyl-phenyl)-1H-1,2,3,4-tetraazol-5-ylsulfanyl)-acetylamino)-ethanone. The open-close shape of BlaC questions the physiological significance of the closed shape known for BlaC-/+ inhibitors and paves new path for structure aided design of novel inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524718 | PMC |
http://dx.doi.org/10.1038/s41598-017-06023-3 | DOI Listing |
J Chromatogr A
January 2025
Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
Traditional packed beds in chromatography suffer from increased band broadening due to the random nature of packing, leading non-ideal fluid flow and channeling. To address these challenges, pillar array columns have been developed, offering improved performance over random packing thanks to their homogenous fluid profiles. The study aims to i) evaluate fluid dynamics and chromatographic performance across different PAC morphologies, ii) establish the influence of column morphology on performance, and iii) assess the correlation between chromatographic performance and hydrodynamic parameters.
View Article and Find Full Text PDFViruses
December 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.
A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding of the brain, unlocking new possibilities in research, diagnosis, and therapy. This review explores how AI's cutting-edge algorithms-ranging from deep learning to neuromorphic computing-are revolutionizing neuroscience by enabling the analysis of complex neural datasets, from neuroimaging and electrophysiology to genomic profiling. These advancements are transforming the early detection of neurological disorders, enhancing brain-computer interfaces, and driving personalized medicine, paving the way for more precise and adaptive treatments.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy.
Sinter-crystallization is a specific method of producing glass-ceramics that allows the manufacture of complexly shaped products, composites and solder. However, it usually is limited when the glass powders used are characterized by a high crystallization trend. This study proposes a new opportunity to improve the sinter-crystallization and demonstrates the benefits of microwave processing using diopside (CaMg(SiO)) glass-ceramics with an enhanced crystallinity of ~70%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!