Beyond Native Cas9: Manipulating Genomic Information and Function.

Trends Biotechnol

Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan. Electronic address:

Published: October 2017

Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated manipulation of genomic information is becoming more versatile by combining nuclease-deficient CRISPR systems with a wide variety of effectors including base-editing deaminases, transcriptional regulators, and epigenetic modifiers. The programmable binding ability of CRISPR systems is essential when the systems are employed as targeting domains to recruit the effectors to specific genomic loci. The discovery of a variety of Cas9 orthologs and engineered variants enables high-fidelity genome editing and a wider selection of genomic targets, and CRISPR-mediated deaminases enable more precise and predictable genome editing compared with CRISPR nuclease-based editing. Finally, combining transcriptional regulators with CRISPR systems can control expression of specific genes in a genome. Some applications and future challenges of CRISPR-derived tools are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2017.06.004DOI Listing

Publication Analysis

Top Keywords

crispr systems
12
transcriptional regulators
8
genome editing
8
native cas9
4
cas9 manipulating
4
genomic
4
manipulating genomic
4
genomic function
4
function clustered
4
clustered regularly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!