An analytical procedure to measure the whole-body uptake of pharmaceuticals in zebrafish has been developed using state-of-the-art methodologies. A sample preparation procedure for 9 pharmaceuticals displaying a variety in physicochemical properties was developed using 10-day old zebrafish (TG898). For an efficient homogenization of the samples and subsequent recovery of the compounds of interest, different amounts of organic solvents in combination with acidic modifiers were added to zebrafish samples. Samples were subsequently processed using a powerful bath sonicator and centrifuged. Supernatant was then removed and evaporated in a vacuum oven before being reconstituted in a mobile phase-like solvent. Samples were analyzed using ultra-high performance liquid chromatography (UHPLC) on an Acquity BEH C column (100 × 2.1mm, d=1.7µm) coupled to a Waters Xevo TQ-S mass spectrometer. For this purpose, a generic gradient was run, wherein the percentage of acetonitrile was varied from 3% to 82% in 10.5min at a flow rate of 0.41mL/min. Linearity of the method was demonstrated for all compounds (R > 0.997) in a practically relevant concentration range. Matrix effects were between 81% and 106%, except for amitriptyline (51%). Using this method, it was demonstrated that a sample pretreatment using 1:2 (v/v) water:methanol in combination with 0.1% formic acid resulted in acceptable recoveries between 74% and 100% for all compounds. Together with the obtained lower limits of quantification of the analytical method (between 0.005 and 1.5ng/mL), this allowed the use of a single zebrafish to study the whole-body uptake of a particular drug, after incubating zebrafish at the maximum tolerated concentration for this drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2017.06.075 | DOI Listing |
J Clin Densitom
January 2025
University of New Mexico Health Sciences Center Albuquerque, NM, USA. Electronic address:
A 54-year-old woman was referred by her rheumatologist for evaluation of an elevated serum alkaline phosphatase (ALP) in the setting of polyarthritis. The metabolic work-up was significant for an elevated bone fraction of alkaline phosphatase isoenzymes, and high bone turnover markers, including fasting C- telopeptide (CTX). A diagnosis of Paget's disease of bone (PDB) was considered.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, GREECE.
Purpose: Exercise-induced heat acclimation can mitigate age-related reductions in heat-loss capacity, though performing repeated bouts of strenuous exercise in the heat may be untenable for many older adults. While short-term passive heat acclimation (e.g.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA.
Purpose: Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA).
View Article and Find Full Text PDFCancer Biother Radiopharm
January 2025
Advanced Innovative Partners, Inc. (AIP), Miami, Florida, USA.
Integrin antagonist complex (IAC), a novel αvβ3 integrin antagonist peptidomimetic, has emerged as a promising agent for molecular imaging of tumor angiogenesis. This study evaluates the biodistribution and clinical efficacy of [Ga]Ga-DOTAGA-IAC PET/CT in detecting radioiodine-refractory differentiated thyroid carcinoma (RAIR-DTC), comparing its diagnostic performance with [F]F-FDG PET/CT. In this prospective pilot study, RAIR-DTC patients underwent whole-body imaging with [F] F-FDG PET/CT, followed by [Ga]Ga-DOTAGA-IAC PET/CT.
View Article and Find Full Text PDFHeliyon
January 2025
Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, SE-75185, Sweden.
: Accurate tumor detection and quantification are important for optimized therapy planning and evaluation. Total tumor burden is also an appealing biomarker for clinical trials. Manual examination and annotation of oncologic PET/CT is labor-intensive and demands a high level of expertise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!