Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In patients with left ventricular heart failure (HF), the development of pulmonary hypertension (PH) is common and represents a strong predictor of death. Despite recent advances in the pathophysiological understanding there is as yet no prospect of cure of this deadly clinical entity and the majority of patients continue to progress to right ventricular failure and die. Furthermore, there is no single medical treatment currently approved for PH related to HF. There is, therefore an urgent unmet need to identify novel pharmacological agents that will prevent the progressive increased or reverse the elevated pulmonary arterial pressures while enhancing cardiac performance in HF.
Method And Results: We here reported, for the first time, using a pressure-loop (P-V) conductance catheter system, that a specific natriuretic peptides clearance receptors' agonist, the ring-deleted atrial natriuretic peptide analogue, cANF4-23 (cANF) reduces pulmonary artery pressures. Strikingly, the administration of the cANF in these mice decreased the RVSP by 50% (n=5, F 25.687, DF 14, p<0.001) and heart rate (HR) by 11% (n=5, F 25.69, DF 14, p<0.001) as well as enhancing cardiac performance including left ventricular contractility in mice. Most strikingly, mice lacking NPR-C were much more susceptible to develop HF, indicating that NPR-C is a critical protective receptor in the heart.
Conclusion: Natriuretic peptides clearance receptors' agonists may, therefore represent a novel and attractive therapeutic strategy for PH related to HF, and ultimately improves the life expectancy and quality for millions of people around the planet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2017.07.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!