Purpose: To establish conditionally immortal mouse corneal endothelial cell lines with genetically matched Slc4a11+/+ and Slc4a11-/- mice as a model for investigating pathology and therapies for SLC4A11 associated congenital hereditary endothelial dystrophy (CHED) and Fuchs' endothelial corneal dystrophy.
Methods: We intercrossed H-2Kb-tsA58 mice (Immortomouse) expressing an IFN-γ dependent and temperature-sensitive mutant of the SV40 large T antigen (tsTAg) with Slc4a11+/+ and Slc4a11-/- C57BL/6 mice. The growth characteristics of the cell lines was assessed by doubling time. Ion transport activities (Na+/H+ exchange, bicarbonate, lactate, and Slc4a11 ammonia transport) were analyzed by intracellular pH measurement. The metabolic status of the cell lines was assessed by analyzing TCA cycle intermediates via gas chromatography mass spectrometry (GC-MS).
Results: The immortalized Slc4a11+/+ and Slc4a11-/- mouse corneal endothelial cells (MCECs) remained proliferative through passage 49 and maintained similar active ion transport activity. As expected, proliferation was temperature sensitive and IFN-γ dependent. Slc4a11-/- MCECs exhibited decreased proliferative capacity, reduced NH3:H+ transport, altered expression of glutaminolysis enzymes similar to the Slc4a11-/- mouse, and reduced proportion of TCA cycle intermediates derived from glutamine with compensatory increases in glucose flux compared with Slc4a11+/+ MCECs.
Conclusions: This is the first report of the immortalization of MCECs. Ion transport of the immortalized endothelial cells remains active, except for NH3:H+ transporter activity in Slc4a11-/- MCECs. Furthermore, Slc4a11-/- MCECs recapitulate the glutaminolysis defects observed in Slc4a11-/- mouse corneal endothelium, providing an excellent tool to study the pathogenesis of SLC4A11 mutations associated with corneal endothelial dystrophies and to screen potential therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5525555 | PMC |
http://dx.doi.org/10.1167/iovs.17-21781 | DOI Listing |
JCI Insight
November 2024
Department of Radiation Oncology and.
End-stage liver disease is marked by portal hypertension, systemic elevations in ammonia, and development of hepatocellular carcinoma (HCC). While these clinical consequences of cirrhosis are well described, it remains poorly understood whether hepatic insufficiency and the accompanying elevations in ammonia contribute to HCC carcinogenesis. Using preclinical models, we discovered that ammonia entered the cell through the transporter SLC4A11 and served as a nitrogen source for amino acid and nucleotide biosynthesis.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
April 2024
Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States.
Purpose: Fuchs endothelial corneal dystrophy (FECD) is a progressive blinding disorder, characterized by increased corneal endothelial excrescences (guttae), corneal endothelial cell loss, and edema. These symptoms are hypothesized to be caused by changes in the extracellular matrix (ECM) and mitochondrial dysfunction in the corneal endothelium. Despite this clinical and biological relevance, a comprehensive animal model that recapitulates all the major disease characteristics is currently unavailable.
View Article and Find Full Text PDFCancer Res
May 2024
State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
Unlabelled: Hepatocellular carcinoma (HCC) is a typical tumor that undergoes metabolic reprogramming, differing from normal liver tissue in glucose, lipid, nucleic acid, and amino acid metabolism. Although ammonia is a toxic metabolic by-product, it has also been recently recognized as a signaling molecule to activate lipid metabolism, and it can be a nitrogen source for biosynthesis to support tumorigenesis. In this study, we revealed that β-catenin activation increases ammonia production in HCC mainly by stimulating glutaminolysis.
View Article and Find Full Text PDFCells
June 2023
Vision Science Program, School of Optometry, Indiana University, Bloomington, IN 47405, USA.
Purpose: Inducible KO leads to corneal edema by disruption of the pump and barrier functions of the corneal endothelium (CE). The loss of Slc4a11 NH-activated mitochondrial uncoupling leads to mitochondrial membrane potential hyperpolarization-induced oxidative stress. The goal of this study was to investigate the link between oxidative stress and the failure of pump and barrier functions and to test different approaches to revert the process.
View Article and Find Full Text PDFOphthalmol Sci
March 2022
Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana.
Purpose: Congenital hereditary endothelial dystrophy (CHED) is a rare condition that manifests at an early age showing corneal edema, increased oxidative stress, mitochondrial dysfunction, and eventually apoptosis of the endothelium due to loss of function of the membrane transport protein SLC4A11. This project tested whether replacing into the CHED mouse model can reverse the disease-associated phenotypes.
Design: Experimental study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!