Surface-enhanced Raman scattering (SERS) is a versatile spectroscopic technique that suffers from reproducibility issues and usually requires complex substrate fabrication processes. In this article, we report the use of a simple mass production technology based on Blu-ray disc manufacturing technology to prepare large area SERS substrates (∼40 mm) with a high degree of homogeneity (±7% variation in Raman signal) and enhancement factor of ∼6 × 10. An industrial high throughput injection molding process was used to generate periodic microstructured polymer substrates coated with a thin Ag film. A short chemical etching step produces a highly dense layer of Ag nanoparticles at the polymer surface, which leads to a large and reproducible Raman signal. Finite difference time domain simulations and cathodoluminescence mapping experiments suggest that the sample microstructure is responsible for the generation of SERS active nanostructures around the microwells. Comparison with commercial SERS substrates demonstrates the validity of our method to prepare cost-efficient, reliable, and sensitive SERS substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b06002 | DOI Listing |
RSC Adv
January 2025
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
Department of Pharmaceutical Analysis, ISF College of Pharmacy Moga, 142001, Punjab, India.
An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.
View Article and Find Full Text PDFRSC Adv
January 2025
V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Physical Science and Technology, Xinjiang University 666 Shengli Road Urumqi 830046 China
This study has successfully prepared three kinds of surface enhanced raman scattering (SERS) substrates, namely AgNP/CuNPs/Bragg-PSi (porous silicon, PSi), AgNPs/CuNPs/PSi and AuNPs/CuNPs/Bragg-PSi by use of an anode electrochemical etching method and a dip plating method. Results show that: the AgNPs/CuNPs/Bragg-PSi substrate has optimal SERS performance and is capable of detecting the Raman spectrum ( = 0.9315) of a 10 M-10 M crystal violet (CV) solution.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Technology, Dong Nai Technology University, 206 Nguyen Khuyen, Trang Dai Ward, Bien Hoa City, Dong Nai 76000, Vietnam.
Surface-enhanced Raman scattering (SERS) represents a compelling detection methodology centered on the electromagnetic fields, commonly termed "hot spots", generated around noble nanoparticles. Nonetheless, the efficacy of electromagnetic field (EMF) amplification is constrained when utilizing individual nanoparticles. There has been a notable lack of experimental and theoretically simulated studies regarding the increase of the electromagnetic field when gold nanorods with different aspect ratios undergo self-assembly in either perpendicular or parallel orientations to substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!