Organ-to-organ signal transmission is essential for higher organisms to ensure coordinated biological reactions during metabolism and morphogenesis. Similar to organs in animals, plant organs communicate by various signalling molecules. Among them, cytokinins, a class of phytohormones, play a key role as root-to-shoot long-distance signals, regulating various growth and developmental processes in shoots. Previous studies have proposed that trans-zeatin-riboside, a type of cytokinin precursor, is a major long-distance signalling form in xylem vessels and its action depends on metabolic conversion via the LONELY GUY enzyme in proximity to the site of action. Here we report an additional long-distance signalling form of cytokinin: trans-zeatin, an active form. Grafting between various cytokinin biosynthetic and transportation mutants revealed that root-to-shoot translocation of trans-zeatin, a minor component of xylem cytokinin, controls leaf size but not meristem activity-related traits, whereas that of trans-zeatin riboside is sufficient for regulating both traits. Considering the ratio of trans-zeatin to trans-zeatin-riboside in xylem and their delivery rate change in response to environmental conditions, this dual long-distance cytokinin signalling system allows plants to fine-tune the manner of shoot growth to adapt to fluctuating environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nplants.2017.112 | DOI Listing |
Am J Primatol
January 2025
Wild Minds Lab, School of Psychology and Neuroscience, University of St Andrews, Fife, United Kingdom.
Wild chimpanzees drum on tree buttresses during dominance displays and travel, generating low-frequency sounds that are audible over distances of more than 1 km. Western chimpanzees (Pan troglodytes verus) in the Nimba Mountains of Guinea selectively choose trees and buttresses when drumming, potentially based on their resonant properties, suggesting that these chimpanzees are optimizing their drumming signals. We investigated whether male eastern chimpanzees (Pan troglodytes schweinfurthii) from the Waibira community in the Budongo Forest, Uganda, also show preferences in tree and buttress choice, exploring whether selectivity is a species-wide feature.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China. Electronic address:
Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China. Electronic address:
Plant electrical signals serve as a medium for long-distance signal transmission and are intricately linked to plant stress responses. High-fidelity acquisition and analysis of plant electrophysiological signals contribute to early stress identification, thereby enhancing agricultural production efficiency. While traditional plant electrophysiology monitoring methods like gel electrodes can capture electrical signals on plant surfaces, which face limitations due to the plant cuticle barrier, impacting signal accuracy.
View Article and Find Full Text PDFPLoS One
December 2024
College of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, China.
The reliable long-distance transmission of electromagnetic wave signals within goaf is fundamental for the implementation of wireless monitoring and early warning systems for goaf-related disasters. This paper establishes an experimental platform for electromagnetic wave signal transmission within goaf and develops a propagation model for electromagnetic waves in the porous media of goaf. The transmission characteristics of electromagnetic waves at various frequencies within the porous media environment of goaf are investigated through experimental and numerical simulation approaches.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia.
Long-distance electrical signals (ESs) are an important mechanism of induction of systemic adaptive changes in plants under local action of stressors. ES-induced changes in photosynthesis and transpiration play a key role in these responses increasing plant tolerance to action of adverse factors. As a result, investigating ways of regulating electrical signaling and ES-induced physiological responses is a perspective problem of plant electrophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!