Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate information acquisition is of vital importance for wireless sensor array network (WSAN) direction of arrival (DOA) estimation. However, due to the lossy nature of low-power wireless links, data loss, especially block data loss induced by adopting a large packet size, has a catastrophic effect on DOA estimation performance in WSAN. In this paper, we propose a double-layer compressive sensing (CS) framework to eliminate the hazards of block data loss, to achieve high accuracy and efficient DOA estimation. In addition to modeling the random packet loss during transmission as a passive CS process, an active CS procedure is introduced at each array sensor to further enhance the robustness of transmission. Furthermore, to avoid the error propagation from signal recovery to DOA estimation in conventional methods, we propose a direct DOA estimation technique under the double-layer CS framework. Leveraging a joint frequency and spatial domain sparse representation of the sensor array data, the fusion center (FC) can directly obtain the DOA estimation results according to the received data packets, skipping the phase of signal recovery. Extensive simulations demonstrate that the double-layer CS framework can eliminate the adverse effects induced by block data loss and yield a superior DOA estimation performance in WSAN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539831 | PMC |
http://dx.doi.org/10.3390/s17071688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!