Prostaglandins (PGs) are a series of hormone-like chemical messengers and play a critical role in regulating physiological activity. The diversified therapeutic activities and complex molecular architectures of PGs have attracted special attention, and huge progress has been made in asymmetric total synthesis and discovery of pharmaceutically useful drug candidates. In the last 10 years, several powerful syntheses have emerged as new solutions to the problem of building PGs and represent major breakthroughs in this area. This review highlights the advances in methodologies for the asymmetric total synthesis of prostaglandins. The application of these methodologies in the syntheses of medicinally useful prostaglandins is also described. The study has been carefully categorized according to the key procedures involved in the syntheses of various prostaglandins, aiming to give readers an easy understanding of this chemistry and provide insights for further improvements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7ob01341h | DOI Listing |
J Org Chem
January 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China.
The asymmetric total syntheses of sarglamides A, C, and E in concise and protecting group free fashion is disclosed. Key steps involve an -selective Diels-Alder reaction to construct the bicyclo[2.2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Jilin Province Key Lab of Green Chemistry and Process, CHINA.
A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Occupational Therapy, School of Health Professions, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
Importance: To efficiently perform bimanual daily tasks, bimanual coordination is needed. Bimanual coordination is the interaction between an individual's hands, which may be impaired post-stroke, however clinical and functional assessments are lacking and research is limited.
Objectives: To develop a valid and reliable observation tool to assess bimanual coordination of individuals post-stroke.
J Am Chem Soc
January 2025
Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
The asymmetric and divergent total syntheses of two phragmalin (moluccensins G and H) and two khayanolide-type (krishnolide F and khayseneganin F) limonoids were disclosed, which employed a torquoselective interrupted Nazarov cyclization as the key step. Taken together with a Liebeskind-Srogl coupling, a benzoin condensation, and bidirectional acyloin rearrangements, our strategy would simplify the synthetic design of both phragmalin and khayanolide-type limonoids and facilitate their modular syntheses. Moreover, the described approach also provides additional insights into the biosynthetic relationships between these two distinct skeletons.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil.
The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na and K ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!