Polyhydroxyalkanoates (PHAs) are biopolymers with desirable material properties similar to petrochemically derived plastics. PHAs are naturally produced by a wide range of microorganisms as a carbon storage mechanism and can accumulate to significantly high levels. PHAs are an environmentally friendly alternative to their petroleum counterparts because they can be easily degraded, potentially reducing the burden on municipal waste systems. Nevertheless, widespread use of PHAs is not currently realistic due to a variety of factors. One of the major constraints of large-scale PHA production is the cost of carbon substrate for PHA-producing microbes. The cost of production could potentially be reduced with the use of waste carbon from food-related processes. Food wastage is a global issue and therefore harbours immense potential to create valuable bioproducts. This article's main focus is to examine the state of the art of converting food-derived waste into carbon substrates for microbial metabolism and subsequent conversion into PHAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658610 | PMC |
http://dx.doi.org/10.1111/1751-7915.12776 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.
View Article and Find Full Text PDFBioresour Technol
January 2025
Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:
Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.
View Article and Find Full Text PDFSci Total Environ
January 2025
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
The development of ecological fertilizers has become crucial in modern agriculture due to the increasing global population and diminishing arable land resources. Herein, a plant growth-promoting fertilizer (UKS) with dual functions of slow-release and water-retention was prepared by combining liquid-phase intercalation method and crosslinking gel method. The physicochemical properties of UKS were analyzed and its dissolution, slow-release, and water-retention properties were systematically evaluated.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:
Coal gasification slag (CGS) is a challenging solid waste due to the presence of highly toxic heavy metals, which pose significant risks to environmental and human health. CGS cannot be freely reused or disposed of, creating considerable obstacles to solid waste resource utilization. This study presents a novel method for heavy metal removal from CGS through a separation-oxidation-acid washing (SOA) process, which effectively recycles residual carbon (RC) while minimizing the risk of heavy metal leakage.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France.
Microbial induced carbonate precipitation (MICP) shows great potential for metals recovery from secondary sources, which is vital for circular economy. This study explores the feasibility of using Sporosarcina pasteurii for MICP to recover copper (Cu) and zinc (Zn) from acidogenic anaerobic digestates at laboratory scale. Pre-cultured S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!