Facile assembly and loading of theranostic polymersomes via multi-impingement flash nanoprecipitation.

J Control Release

Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA; Department of Biomedical Engineering and Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA. Electronic address:

Published: September 2017

Flash nanoprecipitation (FNP) has proven to be a powerful tool for the rapid and scalable assembly of solid-core nanoparticles from block copolymers. The process can be performed using a simple confined impingement jets mixer and provides an efficient and reproducible method of loading micelles with hydrophobic drugs. To date, FNP has not been applied for the fabrication of complex or vesicular nanoarchitectures capable of encapsulating hydrophilic molecules or bioactive protein therapeutics. Here, we present FNP as a single customizable method for the assembly of bicontinuous nanospheres, filomicelles and vesicular, multilamellar and tubular polymersomes from poly(ethylene glycol)-bl-poly(propylene sulfide) block copolymers. Multiple impingements of polymersomes assembled via FNP were shown to decrease vesicle diameter and polydispersity, allowing gram-scale fabrication of monodisperse polymersomes within minutes. Furthermore, we demonstrate that FNP supports the simultaneous loading of both hydrophobic and hydrophilic molecules respectively into the polymersome membrane and aqueous lumen, and encapsulated enzymes were found to be released and remain active following vesicle lysis. As an example application, theranostic polymersomes were generated via FNP that were dual loaded with the immunosuppressant rapamycin and a fluorescent dye to link targeted immune cells with the elicited immunomodulation of T cells. By expanding the capabilities of FNP, we present a rapid, scalable and reproducible method of nanofabrication for a wide range of nanoarchitectures that are typically challenging to assemble and load with therapeutics for controlled delivery and theranostic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603398PMC
http://dx.doi.org/10.1016/j.jconrel.2017.07.026DOI Listing

Publication Analysis

Top Keywords

theranostic polymersomes
8
flash nanoprecipitation
8
rapid scalable
8
block copolymers
8
reproducible method
8
hydrophilic molecules
8
fnp
7
polymersomes
5
facile assembly
4
assembly loading
4

Similar Publications

Targeting vascular disrupting agent-treated tumor microenvironment with tissue-penetrating nanotherapy.

Sci Rep

July 2024

Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia.

Cancer treatment with vascular disrupting agents (VDAs) causes rapid and extensive necrosis in solid tumors. However, these agents fall short in eliminating all malignant cells, ultimately leading to tumor regrowth. Here, we investigated whether the molecular changes in the tumor microenvironment induced by VDA treatment sensitize the tumors for secondary nanotherapy enhanced by clinical-stage tumor penetrating peptide iRGD.

View Article and Find Full Text PDF

Temperature-Responsive "Nano-to-Micro" Transformed Polymersomes for Enhanced Ultrasound/Fluorescence Dual Imaging-Guided Tumor Phototherapy.

Nano Lett

August 2024

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China.

The perfect integration of microbubbles for efficient ultrasound imaging and nanocarriers for intelligent tumor-targeting delivery remains a challenge in precise tumor theranostics. Herein, we exquisitely fabricated laser-activated and targeted polymersomes (abbreviated as FIP-NPs) for simultaneously encapsulating the photosensitizer indocyanine green (ICG) and the phase change agent perfluorohexane (PFH). The formulated FIP-NPs were nanosize and effectively accumulated into tumors as observed by ICG fluorescence imaging.

View Article and Find Full Text PDF

Nucleolin-targeted doxorubicin and ICG co-loaded theranostic lipopolymersome for photothermal-chemotherapy of melanoma in vitro and in vivo.

Eur J Pharm Biopharm

September 2024

Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Combination therapy using chemo-photothermal therapy (chemo-PTT) shows great efficacy toward tumor ablation in preclinical studies. Besides, lipopolymersomes as a hybrid nanocarriers, integrate advantages of liposomes and polymersomes in a single platform in order to provide tremendous biocompatibility, biodegradability, noteworthy loading efficacy for both hydrophobic and hydrophilic drugs with adjustable drug release and high stability. In this study, a multipurpose lipopolymersome was fabricated for guided chemotherapy-PTT and NIR-imaging of melanoma.

View Article and Find Full Text PDF

Organ-selective drug delivery is expected to maximize the efficacy of various therapeutic modalities while minimizing their systemic toxicity. Lipid nanoparticles and polymersomes can direct the organ-selective delivery of mRNAs or gene editing machineries, but their delivery is limited to mostly liver, spleen, and lung. A platform that enables delivery to these and other target organs is urgently needed.

View Article and Find Full Text PDF

Polymersomes as the Next Attractive Generation of Drug Delivery Systems: Definition, Synthesis and Applications.

Materials (Basel)

January 2024

Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal.

Polymersomes are artificial nanoparticles formed by the self-assembly process of amphiphilic block copolymers composed of hydrophobic and hydrophilic blocks. They can encapsulate hydrophilic molecules in the aqueous core and hydrophobic molecules within the membrane. The composition of block copolymers can be tuned, enabling control of characteristics and properties of formed polymersomes and, thus, their application in areas such as drug delivery, diagnostics, or bioimaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!