We consider the goal of predicting how complex networks respond to chronic (press) perturbations when characterizations of their network topology and interaction strengths are associated with uncertainty. Our primary result is the derivation of exact formulas for the expected number and probability of qualitatively incorrect predictions about a system's responses under uncertainties drawn form arbitrary distributions of error. Additional indices provide new tools for identifying which links in a network are most qualitatively and quantitatively sensitive to error, and for determining the volume of errors within which predictions will remain qualitatively determinate (i.e. sign insensitive). Together with recent advances in the empirical characterization of uncertainty in networks, these tools bridge a way towards probabilistic predictions of network dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00285-017-1163-0DOI Listing

Publication Analysis

Top Keywords

complex networks
8
press perturbations
8
exact probabilities
4
probabilities indeterminacy
4
indeterminacy complex
4
networks perceived
4
perceived press
4
perturbations consider
4
consider goal
4
goal predicting
4

Similar Publications

Introduction: Despite efforts by health organizations to share evidence-based information, fake news hindered the promotion of social distancing and vaccination during the coronavirus disease 2019 (COVID-19) pandemic. This study analyzed COVID-19 knowledge and practices in a vulnerable area in northern Rio de Janeiro, acknowledging the influence of the complex social and economic landscape on public health perceptions.

Methodology: This cross-sectional study was conducted in Novo Eldorado - a low-income, conflict-affected neighborhood in Campos dos Goytacazes - using a structured questionnaire, following the peak of COVID-19 deaths in Brazil (July-December 2021).

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification.

NPJ Digit Med

January 2025

Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.

View Article and Find Full Text PDF

Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.

Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!