All domains of life utilize protein phosphorylation as a mechanism of signal transduction. In bacteria, protein phosphorylation was classically thought to be mediated exclusively by histidine kinases as part of two-component signaling systems. However, it is now well appreciated that eukaryotic-like serine/threonine kinases (eSTKs) control essential processes in bacteria. A subset of eSTKs are single-pass transmembrane proteins that have extracellular penicillin-binding-protein and serine/threonine kinase-associated (PASTA) domains which bind muropeptides. In a variety of important pathogens, PASTA kinases have been implicated in regulating biofilms, antibiotic resistance, and ultimately virulence. Although there are limited examples of direct regulation of virulence factors, PASTA kinases are critical for virulence due to their roles in regulating bacterial physiology in the context of stress. This review focuses on the role of PASTA kinases in virulence for a variety of important Gram-positive pathogens and concludes with a discussion of current efforts to develop kinase inhibitors as novel antimicrobials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741517 | PMC |
http://dx.doi.org/10.1016/j.tim.2017.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!