Reinforcements in avian wing bones: Experiments, analysis, and modeling.

J Mech Behav Biomed Mater

Department of Mechanical and Aerospace Engineering and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.

Published: December 2017

Almost all species of modern birds are capable of flight; the mechanical competency of their wings and the rigidity of their skeletal system evolved to enable this outstanding feat. One of the most interesting examples of structural adaptation in birds is the internal structure of their wing bones. In flying birds, bones need to be sufficiently strong and stiff to withstand forces during takeoff, flight, and landing, with a minimum of weight. The cross-sectional morphology and presence of reinforcing structures (struts and ridges) found within bird wing bones vary from species to species, depending on how the wings are utilized. It is shown that both morphology and internal features increases the resistance to flexure and torsion with a minimum weight penalty. Prototypes of reinforcing struts fabricated by 3D printing were tested in diametral compression and torsion to validate the concept. In compression, the ovalization decreased through the insertion of struts, while they had no effect on torsional resistance. An elastic model of a circular ring reinforced by horizontal and vertical struts is developed to explain the compressive stiffening response of the ring caused by differently oriented struts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2017.07.020DOI Listing

Publication Analysis

Top Keywords

wing bones
12
minimum weight
8
struts
5
reinforcements avian
4
avian wing
4
bones
4
bones experiments
4
experiments analysis
4
analysis modeling
4
modeling species
4

Similar Publications

Introduction: Osteochondroma is a bony lesion arising from the surface of the bone. It com-prises a large percentage of all benign bone tumors. A unique feature of this tumor is the conti-nuity of cortical and medullary components between the normal bony tissue and aberrant tissue of osteochondroma.

View Article and Find Full Text PDF

Background: Hip morphology variations, particularly in femoral neck shaft angle (NSA) and iliac wing width (IWW), have been associated with gluteal tendinopathy. However, the biomechanical implications of these morphological differences on gluteal muscle function are not well understood. This study investigates how NSA and IWW influence gluteal muscle forces, moment arms, and estimated tendon loads during walking, aiming to provide insights into the potential biomechanical pathways that may contribute to altered lateral hip loading patterns.

View Article and Find Full Text PDF

A combined biomaterial and cell-based solution to heal critical size bone defects in the craniomaxillofacial area is a promising alternative therapeutic option to improve upon autografting, the current gold standard. A shape memory polymer (SMP) scaffold, composed of biodegradable poly(ε-caprolactone) and coated with bioactive polydopamine, was evaluated with mesenchymal stromal cells (MSCs) derived from adipose (ADSC), bone marrow (BMSC), or umbilical cord (UCSC) tissue in their undifferentiated state or pre-differentiated toward osteoblasts for bone healing in a rat calvarial defect model. Pre-differentiating ADSCs and UCSCs resulted in higher new bone volume fraction (15.

View Article and Find Full Text PDF

[Anatomical investigation of the venous system in pedicled nasal septal mucosal flap and its application in nasal skull base reconstruction].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

November 2024

ENT institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai200031, China Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor, Shanghai200031, China.

To investigate the distribution and primary drainage sites of the venous drainage system in the pedicled nasal septal mucosal flap, as well as to examine protective measures for the venous system of the nasal septal mucosal flap and its application in repairing the nasal skull base through the anatomical study of the nasal septum mucosal venous system in cadavers. Gross anatomy dissections were performed on 13 sides perfused fresh frozen cadaveric head specimens. The nasal septum mucosal flap was separated along the perichondrium and subperiosteum, then passed across the vomer, anterior wall of sphenoid sinus, clivus, and towards the anterior edge of vertical plate of palatine bone.

View Article and Find Full Text PDF

Trace metal accumulation with age in bats: a case study on Pipistrellus kuhlii lepidus from a relatively unpolluted area.

Environ Sci Pollut Res Int

December 2024

Terrestrial Ecosystems and Ecotoxicology Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.

Bats, as exceptionally long-lived small mammals, are at particular risk of metal poisoning due to the tendency of metals to bioaccumulate throughout their lives. In our study, we investigated the general question of how trace metal concentrations change with age in different bat tissues on the example of Pipistrellus kuhlii lepidus, which lives for years in one area and is strongly associated with urban environments. To determine the exact age of the individuals, osteochronology was applied, counting the number of dentine rings in cross-sections of the upper canine tooth of each individual.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!