Improving Plant Nitrogen Use Efficiency through Alteration of Amino Acid Transport Processes.

Plant Physiol

School of Biological Sciences, Washington State University, Pullman, Washington 99164

Published: September 2017

Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea () plants overexpressing () were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the -overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5580756PMC
http://dx.doi.org/10.1104/pp.17.00608DOI Listing

Publication Analysis

Top Keywords

plants
9
amino acid
8
acid transport
8
uptake utilization
8
source sink
8
efficiency
6
improving plant
4
plant nitrogen
4
nitrogen efficiency
4
efficiency alteration
4

Similar Publications

Human activities have significantly altered coastal ecosystems worldwide. The phenomenon of shifting baselines syndrome (SBS) complicates our understanding of these changes, masking the true scale of human impacts. This study investigates the long-term ecological effects of anthropogenic activities on New Zealand's coastal ecosystems over 800 years using fish otolith microchemical profiling and dynamic time warping across an entire stock unit.

View Article and Find Full Text PDF

Fungi are well known for their ability to both produce and catabolize complex carbohydrates to acquire carbon, often in the most extreme of environments. Glucuronoxylomannan (GXM)-based gel matrices are widely produced by fungi in nature and though they are of key interest in medicine and pharmaceuticals, their biodegradation is poorly understood. Though some organisms, including other fungi, are adapted to life in and on GXM-like matrices in nature, they are almost entirely unstudied, and it is unknown if they are involved in matrix degradation.

View Article and Find Full Text PDF

Foliar spray double-stranded RNA targeting HvIAP1 induces high larval and adult mortality in Henosepilachna vigintioctopunctata.

Pest Manag Sci

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Background: Exogenous double-stranded RNA (dsRNA) has the potential to serve as an effective alternative to conventional chemical pesticides for the control of insect pests, because it can specifically inhibit essential gene expression in these organisms. However, identifying suitable gene targets remains a crucial step in the development of RNA interference (RNAi)-based pest control strategies.

Results: In this study, three apoptosis-related genes were selected to evaluate their potential for RNAi-induced lethality in Henosepilachna vigintioctopunctata via foliar spray dsRNAs.

View Article and Find Full Text PDF

Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins.

View Article and Find Full Text PDF

Leaf essential oils (EOs) of seven Eucalyptus species from southern Tunisia (E. gracilis, E. lesouefii, E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!