A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin. | LitMetric

Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin.

Int J Pharm

Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London, SE1 9NH, UK. Electronic address:

Published: September 2017

Systematic in-vitro studies have been conducted to determine the ability of a range of 10 potential hydrotropes to improve the apparent aqueous solubility of the poorly water soluble drug, indomethacin. Solubilisation of the drug in the presence of the hydrotropes was determined experimentally using high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. These experimental data, together with various known and computed physicochemical properties of the hydrotropes were thereafter used in silico to train an artificial neural network (ANN) to allow for predictions of indomethacin solubilisation. The trained ANN was found to give highly accurate predictions of indomethacin solubilisation in the presence of hydrotropes and was thus shown to provide a valuable means by which hydrotrope efficacy could be screened computationally. Interrogation of the network connection weights afforded a quantitative assessment of the relative importance of the various hydrotrope physicochemical properties in determining the extent of the enhancement in indomethacin solubilisation. It is concluded that in-silico screening of drug/hydrotrope systems using artificial neural networks offers significant potential to reduce the need for extensive laboratory testing of these systems, and could thus provide an economy in terms of reduced costs and time in drug formulation development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.07.048DOI Listing

Publication Analysis

Top Keywords

indomethacin solubilisation
16
presence hydrotropes
8
physicochemical properties
8
artificial neural
8
predictions indomethacin
8
solubilisation
5
indomethacin
5
application machine
4
machine learning
4
learning prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!