Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro.

J Proteomics

Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany. Electronic address:

Published: August 2017

Unlabelled: Aiming at a better understanding of the physiological and biochemical background of nitrogen use efficiency, alterations in the shoot proteome under N-deficiency were investigated in two contrasting potato genotypes grown in vitro with 60 and 7.5mM N, respectively. A gel based proteomic approach was applied to identify candidate proteins associated with genotype specific responses to N-deficiency. 21% of the detected proteins differed in abundance between the two genotypes. Between control and N-deficiency conditions 19.5% were differentially accumulated in the sensitive and 15% in the tolerant genotype. 93% of the highly N-deficiency responsive proteins were identified by MALDI TOF/TOF mass spectrometry. The major part was associated with photosynthesis, carbohydrate metabolism, stress response and regulation. Differential accumulation of enzymes involved in the Calvin cycle and glycolysis suggest activation of alternative carbohydrate pathways. In the tolerant genotype, increased abundance under N-deficiency was also found for enzymes involved in chlorophyll synthesis and stability of enzymes, which increase photosynthetic carbon fixation efficiency. Out of a total of 106 differentially abundant proteins, only eight were detected in both genotypes. Our findings suggest that mutually responsive proteins reflect universal stress responses while adaptation to N-deficiency in metabolic pathways is more genotype specific.

Significance: Nitrogen losses from arable farm land considerably contribute to environmental pollution. In potato, this is a special problem due cultivation on light soils, irrigation and the shallow root system. Therefore, breeding of cultivars with improved nitrogen use efficiency and stable yields under reduced N fertilization is an important issue. Knowledge of genotype dependent adaptation to N-deficiency at the proteome level can help to understand regulation of N efficiency and development of N-efficient cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2017.07.010DOI Listing

Publication Analysis

Top Keywords

shoot proteome
8
nitrogen efficiency
8
tolerant genotype
8
responsive proteins
8
enzymes involved
8
adaptation n-deficiency
8
n-deficiency
7
proteins
5
genotype
5
comparative shoot
4

Similar Publications

Beneficial fungi are promising tools for enhancing plant growth and crop yield in stressful environments. TLL1 (POT1) was identified as a potential biofertilizer enhancing plant growth and phosphate use efficiency especially under phosphate deficiency stress. Hence, we attempted to explore bioinformatic insights into how POT1 enhances plant growth under phosphate starvation.

View Article and Find Full Text PDF

Introduction: Numerous studies have reported the beneficial effects of silicon (Si) in alleviating biotic or abiotic stresses in many plant species. However, the role of Si in Fabaceae facing environmental stress is poorly documented. The aim of this study is to investigate the effect of Si on physiological traits and nodulation efficiency in L.

View Article and Find Full Text PDF

Macronutrients such as nitrogen (N), phosphorus (P), potassium (K) and sulphur (S) are critical for plant growth and development. Field-grown canola (Brassica napus L.) is supplemented with fertilizers to maximize plant productivity, while deficiency in these nutrients can cause significant yield loss.

View Article and Find Full Text PDF

The English grain aphid, Sitobion avenae, is a significant agricultural pest affecting wheat, barley, and oats. In Chile, the most prevalent and persistent clone (superclone) of S. avenae harbors the facultative endosymbiont bacterium Regiella insecticola.

View Article and Find Full Text PDF

The use of biofertilizers is becoming an economical and environmentally friendly alternative to promote sustainable agriculture. Biochar from microalgae/cyanobacteria can be applied to enhance the productivity of food crops through soil improvement, slow nutrient absorption and release, increased water uptake, and long-term mitigation of greenhouse gas sequestration. Therefore, the aim of this study was to evaluate the stimulatory effects of biochar produced from Spirulina () biomass on the development and seed production of rice plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!