A two-step melt blending procedure was used to produce binary systems composed of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT). To improve the properties of the blends, two different layered silicates, viz. bentonite (BT) and organically modified montmorillonite (oMMT) were incorporated. First, TPS and its layered silicate nanocomposites were prepared via extrusion compounding during which starch was plasticized with glycerol and water. In the second step, PBAT was added to TPS/layered silicate to produce blends in a batch-type mixer. Mechanical and thermal properties were determined. The blends showed acceptable ductility over 50wt.% PBAT content, although at the cost of strength and stiffness. By contrast to oMMT the BT became intercalated in TPS and TPS/PBAT blends. The reinforcing effect of BT and oMMT was most prominent for the glassy states of both TPS and TPS/PBAT blends. Thermal, and thermooxidative properties were not significantly affected by the presence of layered silicates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2017.05.100 | DOI Listing |
Environ Pollut
December 2024
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China. Electronic address:
With the widespread use of biodegradable plastic bags, their potential environmental risks need further assessment. This study focused on commercial starch-based blended biodegradable microplastics (70% Poly(butylene adipate-co-terephthalate) (PBAT)+5% Poly(lactic acid) (PLA)+20% Thermoplastic starch (TPS), PPT MPs) to investigate their adsorption behaviors towards Cu(II) and oxytetracycline (OTC) under microbial colonization and biodegradation. Post-biodegradation, the hydroxyl (-OH) peak intensity of starch in PPT significantly decreased, while carbonyl (C=O) peaks of PBAT and PLA broadened, with O/C ratio rising from 14.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 180, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico.
Bovine hair waste was chemically modified to obtain a coupling agent (CA) for the compatibilization of thermoplastic starch (TPS)-unmodified bovine hair waste (UH) composites. The composites processed with CA presented improved tensile strength (3.5 MPa) compared to TPS-UH composites without CA (1.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
The development of biodegradable active packaging is a relevant topic demanding the development of film properties, biodegradability, and the potential to preserve food quality. This study aimed to develop thermoplastic starch (TPS) blended with polybutylene adipate-co-terephthalate (PBAT) films via blown-film extrusion containing ascorbyl palmitate (AP) and sodium ascorbyl phosphate (SAP) as antioxidants. The morphology, mechanism, and barrier and antioxidant properties of the films were analyzed to determine the presence of AP, SAP, and their interaction effect on the film properties.
View Article and Find Full Text PDFData Brief
December 2024
Fondation AgroParisTech, Chaire CoPack, UMR SayFood, 91120 Palaiseau, France.
The dataset reports the impact of incorporating commercial compostable plastics into a full-scale open-air windrow composting process using household-separated biowaste. Two batches were prepared from the same biowaste mixture: one as a control and the other with 1.28 wt% of certified compostable plastics.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic.
This work describes the preparation of highly homogeneous thermoplastic starches (TPS's) with the addition of 0, 5, or 10 wt.% of maltodextrin (MD) and 0 or 3 wt.% of TiO nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!