Chitosan (CS) presents antibacterial, mucoadhesive and hemostatic properties and is an ideal candidate for wound dressing applications. This work reports the development of sponge-like materials obtained from physical hydrogels after the interaction between CS and a β-cyclodextrin polymer (PCD) in acidic conditions to provoke immediate gelation. Characterization consisted of zeta potential (ZP) measurements, rheology analysis, Fourier transform infrared (FTIR), Raman spectroscopy, wide angle X-ray scattering (WAXS) and scanning electron microscopy (SEM). Swelling behavior, cytotoxicity, drug sorption and drug delivery properties of sponges were assessed. ZP indicated that CS and PCD presented opposite charges needed for physical crosslinking. Rheology, swelling, and cytotoxicity of sponges depended on their CS:PCD weight ratios. Increasing PCD in the mixture delayed the gel time, reduced the swelling and increased the cytotoxicity. FTIR and Raman confirmed the physical crosslinking between CS and PCD through ionic interactions, and WAXS showed the amorphous state of the sponges. Finally, the efficiency of chlorhexidine loaded sponge against S. aureus bacteria was proved for up to 30days in agar diffusion tests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.06.026DOI Listing

Publication Analysis

Top Keywords

β-cyclodextrin polymer
8
wound dressing
8
dressing applications
8
ftir raman
8
physical crosslinking
8
preparation characterization
4
characterization novel
4
novel chitosan
4
chitosan β-cyclodextrin
4
sponges
4

Similar Publications

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.

View Article and Find Full Text PDF

Chitosan nanoencapsulation of Turbinaria triquetra metabolites in the management of podocyturia in nephrotoxic rats.

Sci Rep

January 2025

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute , National Research Centre, Dokki, Cairo, 12622, Egypt.

Cisplatin is a chemotherapeutic drug, which exhibits undesirable side effects. Chitosan nanoparticles are promising for drug delivery. The aim of this study was to determine the effect of the brown alga Turbinaria triquetra ethyl acetate fraction and polysaccharides, either loaded on chitosan nanoparticles or free, against podocyturia and cisplatin nephrotoxicity in rats.

View Article and Find Full Text PDF

Gold nanoparticles supported onto zwitterionic polymer capillary monoliths meant for efficient enrichment of microcystins in water.

Talanta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou, 350116, Fuzhou University, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350116, China. Electronic address:

The release of microcystin (MCs) in aquatic ecosystems poses a substantial risk to the safety of irrigation and drinking water. In view of the challenges associated with monitoring MCs in water bodies, given their low concentration levels (μg/L to ng/L) and the presence of diverse matrix interferences, there is an urgent need to develop an efficient, cost-effective and selective enrichment technique for MCs prior to its quantification. In this work, a gold nanoparticles (AuNPs)-functionalized zwitterionic polymer monolith was described and further applied for the affinity enrichment of MCs.

View Article and Find Full Text PDF

β-cyclodextrin polymers as a new sorbent for solid-phase extraction of xenobiotics in Urine.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

This study systematically assessed the performance of a newly developed solid-phase extraction (SPE) material, cellulose-supported aminated β-cyclodextrin polymer (amine-β-CDP@Cellulose), in determining 44 xenobiotics, encompassing endocrine-disrupting chemicals (EDCs), pharmaceuticals, and food additives in urine samples. The primary objective of the research was to synthesize a new sorbent, optimize the extraction protocol, and elucidate the underlying adsorption and desorption mechanisms. Following optimization, it was observed that amine-β-CDP@Cellulose achieved recoveries ranging from 80 % to 120 % for 28 of the 44 targeted xenobiotics, with only three compounds showing recoveries below 50 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!