Aldehyde dehydrogenases (ALDHs) are NAD(P)-dependent oxidoreductases that catalyze the oxidation of a variety of aldehydes to their acid forms. In this study, we determined the crystal structures of ALDH from Bacillus cereus (BcALDH), alone, and in complex with NAD and NADP. This enzyme can oxidize all-trans-retinal to all-trans-retinoic acid using either NAD or NADP with equal efficiency, and atypically, as a minor activity, can reduce all-trans-retinal to all-trans-retinol using NADPH. BcALDH accommodated the additional 2'-phosphate of NADP by expanding the cofactor-binding pocket and upshifting the AMP moiety in NADP. The nicotinamide moiety in NAD and NADP had direct interactions with the conserved catalytic residues (Cys300 and Glu266) and caused concerted conformational changes. We superimposed the structure of retinoic acid bound to human ALDH1A3 onto the BcALDH structure and speculated a model of the substrate all-trans-retinal bound to BcALDH. We also proposed a plausible mechanism for the minor reducing activity of BcALDH. These BcALDH structures will be useful in understanding cofactor specificity and the catalytic mechanism of an atypical bacterial BcALDH and should help the development of a new biocatalyst to produce retinoic acid and related high-end products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2017.07.112 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
1,4-Dihydronicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) are essential cofactors required for all living cells, playing pivotal roles in multiple biological processes such as energy metabolism and biosynthesis. NADPH is produced during photosynthesis by the combination of photosystem II, where water is oxidised, and photosystem I, where NADP is reduced. This review focuses on catalytic NAD(P) (and its analogues) reduction to generate 1,4-NAD(P)H without formation of other regioisomers and the dimer.
View Article and Find Full Text PDFSci Adv
January 2025
Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial reducing cofactor for reductive biosynthesis and protection from oxidative stress. To fulfill their heightened anabolic and reductive power demands, cancer cells must boost their NADPH production. Progrowth and mitogenic protein kinases promote the activity of cytosolic NAD kinase (NADK), which produces NADP, a limiting NADPH precursor.
View Article and Find Full Text PDFCells
January 2025
Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
Background: The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions.
View Article and Find Full Text PDFBiochem J
January 2025
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!