Substrate stiffness regulates arterial-venous differentiation of endothelial progenitor cells via the Ras/Mek pathway.

Biochim Biophys Acta Mol Cell Res

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China. Electronic address:

Published: October 2017

AI Article Synopsis

  • Cells interact with their environment through the extracellular matrix (ECM), making cell-matrix interactions crucial for tissue engineering.
  • A PDMS-based substrate was created to mimic the stiffness of arterial and venous tissues, allowing researchers to study how this stiffness affects the differentiation of endothelial progenitor cells (EPCs).
  • The study found that increasing substrate stiffness boosts the arterial marker ephrinB2 while reducing the venous marker EphB4, revealing that stiffness influences EPC differentiation via the Ras/Mek signaling pathway.

Article Abstract

Cells sense and respond to the biophysical properties of their surrounding environment by interacting with the extracellular matrix (ECM). Therefore, the optimization of these cell-matrix interactions is critical in tissue engineering. The vascular system is adapted to specific functions in diverse tissues and organs. Appropriate arterial-venous differentiation is vital for the establishment of functional vasculature in angiogenesis. Here, we have developed a polydimethylsiloxane (PDMS)-based substrate capable of simulating the physiologically relevant stiffness of both venous (7kPa) and arterial (128kPa) tissues. This substrate was utilized to investigate the effects of changes in substrate stiffness on the differentiation of endothelial progenitor cells (EPCs). As EPCs derived from mouse bone marrow were cultured on substrates of increasing stiffness, the mRNA and protein levels of the specific arterial endothelial cell marker ephrinB2 were found to increase, while the expression of the venous marker EphB4 decreased. Further experiments were performed to identify the mechanotransduction pathway involved in this process. The results indicated that substrate stiffness regulates the arterial and venous differentiation of EPCs via the Ras/Mek pathway. This work shows that modification of substrate stiffness may represent a method for regulating arterial-venous differentiation for the fulfilment of diverse functions of the vasculature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2017.07.006DOI Listing

Publication Analysis

Top Keywords

substrate stiffness
16
arterial-venous differentiation
12
stiffness regulates
8
differentiation endothelial
8
endothelial progenitor
8
progenitor cells
8
ras/mek pathway
8
substrate
6
differentiation
5
stiffness
5

Similar Publications

SARS-CoV-2 is a viral infection, best studied in the context of epithelial cell infection. Epithelial cells, when infected with SARS-CoV-2 express the viral S-protein, which causes host cells to fuse together into large multi-nucleated cells known as syncytia. Because SARS-CoV-2 infections also frequently present with cardiovascular phenotypes, we sought to understand if S-protein expression would also result in syncytia formation in endothelial cells.

View Article and Find Full Text PDF

Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations.

Adv Sci (Weinh)

January 2025

LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.

Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.

View Article and Find Full Text PDF

Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses.

View Article and Find Full Text PDF

Droplet evaporation on solid substrates is a ubiquitous phenomenon and is relevant in many natural and industrial processes. Whereas it has been reported that the evaporation process is sped up on soft substrates compared with that on hard substrates, no attempt has been made in exploring how substrate stretching affects droplet evaporation and evaporative deposition patterns. Here, we systematically investigate the contact line dynamics of droplets evaporating on substrates with different stiffnesses and stretching ratios and the structures of the evaporative deposition patterns of nanoparticles.

View Article and Find Full Text PDF

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!