Recent studies highlighted the potential of PEGylated proteins to improve stabilities and pharmacokinetics of protein drugs. Ion-exchange chromatography (IEX) is among the most frequently used purification methods for PEGylated proteins. However, the underlying physical mechanisms allowing for a separation of different PEGamers (proteins with a varying number of attached PEG molecules) are not yet fully understood. In this work, mechanistic chromatography modeling is applied to gain a deeper understanding of the mass transfer and adsorption/desorption mechanisms of mono-PEGylated proteins in IEX. Using a combination of the general rate model (GRM) and the steric mass action (SMA) isotherm, simulation results in good agreement with the experimental data are achieved. During linear gradient elution of proteins attached with PEG of different molecular weight, similar peak heights, and peak shapes at constant gradient length are observed. A superimposed effect of increased desorption rate and reduced diffusion rate as a function of the hydrodynamic radius of PEGylated proteins is identified to be the reason of this anomaly. That is why the concept of the diffusion-desorption-compensation effect is proposed. In addition to the altered elution orders, PEGylation results in a considerable decrease of maximum binding capacity. By using the SMA model in a kinetic formulation, the adsorption behavior of PEGylated proteins in the highly concentrated state is described mechanistically. An exponential increase in the steric hindrance effect with increasing PEG molecular weight is observed. This suggests the formation of multiple PEG layers in the interstitial space between bound proteins and an associated shielding of ligands on the adsorber surface to be the cause of the reduced maximum binding capacity. The presented in silico approach thus complements the hitherto proposed theories on the binding mechanisms of PEGylated proteins in IEX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.201700255 | DOI Listing |
J Control Release
January 2025
Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore. Electronic address:
mRNA-loaded lipid nanoparticles (mRNA-LNPs) hold great potential for disease treatment and prevention. LNPs are normally made from four lipids including ionizable lipid, helper lipid, cholesterol, and PEGylated lipid (PEG-lipid). Although PEG-lipid has the lowest content, it plays a crucial role in the effective delivery of mRNA-LNPs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China.
Objective: Although pegylated interferon α-2b (PEG-IFN α-2b) therapy for chronic hepatitis B has received increasing attention, determining the optimal treatment course remains challenging. This research aimed to develop an efficient model for predicting interferon (IFN) treatment course.
Methods: Patients with chronic hepatitis B, undergoing PEG-IFN α-2b monotherapy or combined with NAs (Nucleoside Analogs), were recruited from January 2018 to December 2023 at Tianjin Third Central Hospital.
Molecules
January 2025
Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Pediatric Research Center, New Children's Hospital, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland.
Background: Recombinant growth hormone (rhGH) has been used since 1985 to treat growth hormone (GH)-induced short stature, typically associated with transient adverse events. However, lipoatrophy, characterized by irreversible damage to subcutaneous fat, was first reported in 1999 and linked to antibody formation. In 2021, localized lipoatrophy was observed in 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!