H-type bovine spongiform encephalopathy (H-BSE) is an atypical form of BSE in cattle. During passaging of H-BSE in transgenic bovinized (TgBoPrP) mice, a novel phenotype of BSE, termed BSE-SW emerged and was characterized by a short incubation time and host weight loss. To investigate the biological and biochemical properties of the BSE-SW prion, a transmission study was conducted in cattle, which were inoculated intracerebrally with brain homogenate from BSE-SW-infected TgBoPrP mice. The disease incubation period was approximately 15 months. The animals showed characteristic neurological signs of dullness, and severe spongiform changes and a widespread, uniform distribution of disease-associated prion protein (PrP) were observed throughout the brain of infected cattle. Immunohistochemical PrP staining of the brain revealed the presence of intraglial accumulations and plaque-like deposits. No remarkable differences were identified in vacuolar lesion scores, topographical distribution patterns, and staining types of PrP in the brains of BSE-SW- vs H-BSE-infected cattle. PrP deposition was detected in the ganglia, vagus nerve, spinal nerve, cauda equina, adrenal medulla, and ocular muscle. Western blot analysis revealed that the specific biochemical properties of the BSE-SW prion, with an additional 10- to 12-kDa fragment, were well maintained after transmission. These findings indicated that the BSE-SW prion has biochemical properties distinct from those of H-BSE in cattle, although clinical and pathologic features of BSW-SW in cattle are indistinguishable from those of H-BSE. The results suggest that the 2 infectious agents, BSE-SW and H-BSE, are closely related strains.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0300985817717769DOI Listing

Publication Analysis

Top Keywords

biochemical properties
12
bse-sw prion
12
h-type bovine
8
bovine spongiform
8
spongiform encephalopathy
8
tgboprp mice
8
properties bse-sw
8
cattle
7
prion
5
h-bse
5

Similar Publications

Probing the properties of PTEN specific botulinum toxin type E mutants.

J Neural Transm (Vienna)

January 2025

Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.

Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury.

View Article and Find Full Text PDF

Determining interaction directionality in complex biochemical networks from stationary measurements.

Sci Rep

January 2025

National Research Council of Canada, NRC-Fields Mathematical Sciences Collaboration Centre, 222 College st., Toronto, ON, M5T 3J1, Canada.

Revealing interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Some methods may reveal undirected network topology, e.g.

View Article and Find Full Text PDF

Chiral isomers show different behaviours and properties in physiological activities. It is of great significance to find productive approach to realize the recognition of enantiomers, which is a key issue in biochemical and pharmaceutical fields. Nowadays, chiral identification can be successfully achieved according to the discrepancies of special signals correlated with different enantiomers of multiple electrode structures.

View Article and Find Full Text PDF

Synthetic cells in tissue engineering.

Curr Opin Biotechnol

January 2025

INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, United Kingdom. Electronic address:

Tissue functions rely on complex structural, biochemical, and biomechanical cues that guide cellular behavior and organization. Synthetic cells, a promising new class of biomaterials, hold significant potential for mimicking these tissue properties using simplified, nonliving building blocks. Advanced synthetic cell models have already shown utility in biotechnology and immunology, including applications in cancer targeting and antigen presentation.

View Article and Find Full Text PDF

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!