An unexpected product-selectivity in the reaction of 2-arylideneindane-1,3-dione with dimethyl diazomethylphosphonate leading to the formation of two different types of products is reported. The reaction carried out in acetone in the presence of catalytic amount of cesium fluoride afforded spiropyrazoline phosphonates via 1,3-dipolar cycloaddition reaction, whereas the reaction in methanol yielded an interesting class of pyrazolylphthalides. This strategy provides an efficient alternative method for the construction of pyrazolylphthalides, and moreover, the process is general, works under mild conditions, and exhibits high functional group compatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7ob01417aDOI Listing

Publication Analysis

Top Keywords

rapid selective
4
selective synthesis
4
synthesis spiropyrazolines
4
spiropyrazolines pyrazolylphthalides
4
pyrazolylphthalides employing
4
employing seyferth-gilbert
4
seyferth-gilbert reagent
4
reagent unexpected
4
unexpected product-selectivity
4
reaction
4

Similar Publications

Selective Undercut of Undoped Optical Membranes for Spin-Active Color Centers in 4H- Silicon Carbide.

ACS Nano

January 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.

View Article and Find Full Text PDF

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Male reproductive proteins frequently evolve rapidly in animals, potentially due to adaptive evolution driven by sperm competition, polyspermy avoidance, or pathogen defense. Alternatively, elevated rates of protein change may be due to relaxed constraint. The prostate-specific protease KLK3 has experienced dynamic evolution since its origin stemming from a gene duplication in the ancestor of all Old World primates, with instances of rapid evolution, stasis, and pseudogenization.

View Article and Find Full Text PDF

Objective: This study aimed to assess the safety and efficacy of tissue Plasminogen Activator (tPA) in patients with COVID-19-induced severe Acute Respiratory Distress Syndrome (ARDS).

Methods: The intervention group consisted of eligible patients with severe ARDS due to COVID-19 admitted to the Intensive Care Unit (ICU) of a university hospital. We selected the control group from admitted patients treated in the same ICU within the same period.

View Article and Find Full Text PDF

Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!