A mononuclear hexa-coordinated iron carbonyl complex [Fe(μ-bdt)(CO)(PTA)] 1 (bdt = 1,2-benzenedithiolate; PTA = 1,3,5-triaza-7-phosphaadamantane) with two bulky phosphine ligands in the trans position was synthesized and characterized by X-ray structural analysis coulometry data, FTIR, electrochemistry and electronic structure calculations. The complex undergoes a facilitated two-electron reduction 1/1 and shows an inverted one-electron reduction for 1/1 at higher potentials. Electrochemical investigations of 1 are compared to the closely related [Fe(bdt)(CO)(PMe)] compound. A mechanistic suggestion for the hydrogen evolution reaction upon proton reduction from acid media is derived. The stability of 1 in both weak and strong acids is monitored by cyclic voltammetry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt01994gDOI Listing

Publication Analysis

Top Keywords

iron carbonyl
8
carbonyl complex
8
complex [feμ-bdtcopta]
8
bulky phosphine
8
phosphine ligands
8
reduction 1/1
8
mononuclear iron
4
[feμ-bdtcopta] bulky
4
ligands model
4
model [fefe]
4

Similar Publications

Herein, we report the solvent-dependent reactivity of Fe(CO) toward AsF in either anhydrous HF or liquid SO. The reaction of Fe(CO) with the superacid HF/AsF leads to the protonation of the iron center and allows for the first-time structural characterization of [FeH(CO)] in the solid state, representing one of the most acidic transition metal hydride complexes to ever be isolated and structurally characterized. In the aprotic but oxidation-stable solvent SO, Fe(CO) is oxidized and dimerized to [Fe(CO)], which is isoelectronic with well-known Mn(CO).

View Article and Find Full Text PDF

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

Article Synopsis
  • The study focuses on creating effective and affordable electrocatalysts for water electrolysis, vital for improving technology in this area.
  • The authors developed a novel catalyst by anchoring carbonyl iron powder in nickel foam, leading to enhanced surface area and efficient ion movement.
  • The catalyst exhibits high activity due to a dynamic interaction between different nickel and iron phases, significantly boosting its performance in the oxygen evolution reaction.
View Article and Find Full Text PDF

CO Reduction at a Borane-Modified Iron Complex: A Secondary Coordination Sphere Strategy.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada.

This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = CMe ) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO. Control experiments underscore the critical nature of borane incorporation for transforming CO to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H].

View Article and Find Full Text PDF

Background/objectives: Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment.

View Article and Find Full Text PDF

Iron-Catalyzed Aerobic Carbonylation of Methane via Ligand-to-Metal Charge Transfer Excitation.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China.

The integration of ligand-to-metal charge transfer (LMCT) catalytic paradigms with radical intermediates has transformed the selective functionalization of inert C-H bonds, facilitating the use of nonprecious metal catalysts in demanding transformations. Notably, aerobic C-H carbonylation of methane to acetic acid remains formidable due to the rapid oxidation of methyl radicals, producing undesired C1 oxygenates. We present an iron terpyridine catalyst utilizing LMCT to achieve exceptional C2/C1 selectivity through synergistic photoexcitation, methyl radical generation, and carbonylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!