The group of phages belonging to the family Podoviridae, genus P68virus, including Staphylococcus viruses S13' and S24-1, are important because of their benefits in phage therapy against Staphylococcus aureus infections. The O-glycosidic linkage patterns of wall teichoic acids (WTAs) in S. aureus cell walls seem to be important for adsorption of this phage group. In this study, the adsorption of Staphylococcus viruses S13' and S24-1 to S. aureus was examined using strains with modified WTA glycosidic linkage patterns. We found that the β-O-N-acetylglucosamine of WTAs was essential for S13' adsorption, while N-acetylglucosamine, regardless of the α- and β-O-glycosidic linkages of the WTAs, was essential for S24-1 adsorption. Next, examining the binding activities of their receptor-binding proteins (RBPs) to cell walls with different WTA glycosidic patterns, the β-O-N-acetylglucosamine of the WTAs was essential for S13' RBP binding, while N-acetylglucosamine, regardless of the α- and β-O-glycosidic linkages of the WTAs, was essential for S24-1 RBP binding. Therefore, the results of the RBP binding assays were consistent with those of the phage adsorption assays. Bioinformatic analysis suggested that the RBPs of Staphylococcus viruses S13' and S24-1 were structurally similar to the RBPs of phage phi11 of thefamily Siphoviridae. Phylogenetic analysis of the RBPs indicated that two phylogenetic subclusters in the family Podoviridae were related to the glycosidic linkage patterns required for phage adsorption, possibly mediated by RBPs. We hope that this study will encourage the future development of therapeutic phages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jgv.0.000865 | DOI Listing |
Infect Dis (Lond)
January 2025
Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA.
Background: Whether a detected virus or bacteria is a pathogen that may require treatment, or is merely a commensal 'passenger', remains confusing for many infections. This confusion is likely to increase with the wider use of multi-pathogen PCR.
Objectives: To propose a new statistical procedure to analyse and present data from case-control studies clarifying the probability of causality.
Environ Pollut
January 2025
Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Airborne microorganisms in hospitals present significant health risks to both patients and employees. However, their pollution profiles and associated hazards in different hospital areas remained largely unknown during the extensive use of masks and disinfectants. This study investigated the characteristics of bioaerosols in an urban general hospital during the COVID-19 pandemic and found that airborne bacteria and fungi concentrations range from 87±35 to 1037±275 CFU/m and 21±15 to 561±132 CFU/m, respectively, with the outpatient clinic and internal medicine ward showing the highest levels.
View Article and Find Full Text PDFVet Microbiol
January 2025
Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China. Electronic address:
Cecropin AD (CAD), a hybrid antimicrobial peptide composed of the first 11 residues of cecropin A and last 26 residues of cecropin D, is a promising antibiotic candidate. Therefore, an efficient and convenient method for producing CAD is necessary for commercial applications. The Newcastle disease virus (NDV) has been widely used as a platform for gene delivery and exogenous protein expression.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine.
Background: In the era of resistance, the design and search for new "small" molecules with a narrow spectrum of activity that target a protein or enzyme specific to a certain bacterium with high selectivity and minimal side effects remains an urgent problem of medicinal chemistry. In this regard, we developed and successfully implemented a strategy for the search for new hybrid molecules, namely, the not broadly known [2-(3-R-1-[1,2,4]-triazol-5-yl)phenyl]amines. They can act as "building blocks" and allow for the introduction of certain structural motifs into the desired final products in order to enhance the antistaphylococcal effect.
View Article and Find Full Text PDFMicroorganisms
January 2025
Intensive Care Unit, Sismanogleio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece.
Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!