Introduction: The electrophysiologic basis for characteristic rate-dependent, constant-late-coupled (390 + 54 milliseconds) premature ventricular beats (PVBs) present 4-5 days following coronary artery occlusion were examined in 108 anesthetized dogs.

Methods And Results: Fractionated/double potentials were observed in injured zone bipolar and composite electrograms at prolonged sinus cycle lengths (1,296 ± 396 milliseconds). At shorter cycle lengths, conduction of the delayed potential decremented, separating from the initial electrogram by a progressively prolonged isoelectric interval. With sufficient delay of the second potential following an isoelectric interval, a PVB was initiated. Both metastable and stable constant-coupled PVBs were associated with Wenckebach-like patterns of delayed activation following an isoelectric interval. Signal-averaging from the infarct border confirmed the presence of an isoelectric interval preceding the PVBs (N = 15). Pacing from the site of double potential formation accurately reproduced the surface ECG morphology (N = 15) of spontaneous PVBs. Closely-spaced epicardial mapping demonstrated delayed activation across an isoelectric interval representing "an arc of conduction block." Rate-dependent very slow antegrade conduction through a zone of apparent conduction block (N = 8) produced decremental activation delays until the delay was sufficient to excite epicardium distal to the original "arc of conduction block," resulting in PVB formation.

Conclusion: The present experiments demonstrate double potential formation and rate-dependent constant-coupled late PVB formation in infarcted dog hearts. Electrode recordings demonstrate a prolonged isoelectric period preceding PVB formation consistent with very slow conduction (<70 mm/s) across a line of apparent conduction block and may represent a new mechanism of PVB formation following myocardial infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.13300DOI Listing

Publication Analysis

Top Keywords

isoelectric interval
20
slow conduction
8
cycle lengths
8
prolonged isoelectric
8
delayed activation
8
activation isoelectric
8
double potential
8
potential formation
8
conduction block"
8
pvb formation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!